Synlett 2018; 29(19): 2503-2508
DOI: 10.1055/s-0037-1610219
cluster
© Georg Thieme Verlag Stuttgart · New York

pH-Driven Conformational Switching of Quinoxaline Cavitands in Polymer Matrices

M. Torelli
a   Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy   eMail: enrico.dalcanale@unipr.it
,
I. Domenichelli
a   Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy   eMail: enrico.dalcanale@unipr.it
,
A. Pedrini
a   Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy   eMail: enrico.dalcanale@unipr.it
,
F. Guagnini
a   Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy   eMail: enrico.dalcanale@unipr.it
,
R. Pinalli
a   Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy   eMail: enrico.dalcanale@unipr.it
,
F. Terenziani
a   Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy   eMail: enrico.dalcanale@unipr.it
,
F. Artoni
b   Department of Engineering & Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
,
R. Brighenti
b   Department of Engineering & Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
,
E. Dalcanale*
a   Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy   eMail: enrico.dalcanale@unipr.it
› Institutsangaben
This work is supported by the Hierarchical Self Assembly of Polymeric Soft Systems (SASSYPOL-ITN) Marie Skłodowska Curie network, funded through the European Union Seventh Framework Programme (FP7-PEOPLE-2013-ITN) under Grant Agreement No. 607602.
Weitere Informationen

Publikationsverlauf

Received: 26. Mai 2018

Accepted after revision: 29. Juni 2018

Publikationsdatum:
24. Juli 2018 (online)


Published as part of the Cluster Synthesis of Materials

Abstract

While pH-driven interconversion of tetraquinoxaline cavitands (QxCav) from vase to kite conformation has been extensively studied both in solution and at interfaces, cavitands behavior in solid matrices is still unexplored. Therefore, the synthesis of a new class of quinoxaline cavitand based copolymers is here reported; a soluble linear poly(butyl methacrylate) (PBMA) and an insoluble cross-linked polydimethylsiloxane (PDMS), ensuring a convenient incorporation of the switchable unit, were chosen as polymer matrices. Conformational studies, performed both in solution and at the solid state, confirmed the retention of vase → kite switching behavior when moving from monomeric units to polymeric structures.

Supporting Information

 
  • References and Notes

  • 1 Theato P. Sumerlin BS. O’Reillyc RK. Epps TH. Chem. Soc. Rev. 2013; 42: 7055
  • 2 Jochum F. Theato P. Chem. Soc. Rev. 2013; 42: 7468
  • 3 Pucci A. Di Cuia F. Signori F. Ruggeri G. J. Mater. Chem. 2007; 17: 783
  • 4 Zhang X. Han L. Liu M. Wang K. Tao L. Wana Q. Wei Y. Mater. Chem. Front. 2017; 1: 807
  • 5 Kocak G. Tuncer C. Bütün V. Polym. Chem. 2017; 8: 144
  • 6 Moran JR. Karbach S. Cram DJ. J. Am. Chem. Soc. 1982; 104: 5826
  • 7 Moran JR. Ericson JL. Dalcanale E. Bryant JA. Knobler CB. Cram DJ. J. Am. Chem. Soc. 1991; 113: 5707
  • 8 Azov VA. Beeby A. Cacciari M. Cheetham AG. Diederich F. Frei M. Gimzewski JK. Gramlich V. Hecht B. Jaun B. Latychevskaia T. Lieb A. Lill Y. Marotti F. Schlegel A. Schlittler RR. Skinner PJ. Seiler P. Yamakoshi Y. Adv. Funct. Mater. 2006; 16: 147
  • 9 Skinner PJ. Cheetham AG. Beeby A. Gramlich V. Diederich F. Helv. Chim. Acta 2001; 84: 2146
    • 10a Amrhein P. Shivanyuk A. Johnson DW. Rebek JJr. J. Am. Chem. Soc. 2002; 124: 10349
    • 10b Frei M. Marotti F. Diederich F. Chem. Commun. 2004; 1362
  • 11 Frei M. Diederich F. Tremont R. Rodriguez T. Echegoyen L. Helv. Chim. Acta 2006; 89: 2040
    • 12a Pochorovski I. Boudon C. Gisselbrecht J.-P. Ebert M.-O. Schweizer WB. Diederich F. Angew. Chem. Int. Ed. 2012; 51: 262
    • 12b Pochorovski I. Ebert M.-O. Gisselbrecht J.-P. Boudon C. Schweizer WB. Diederich F. J. Am. Chem. Soc. 2012; 134: 14702
    • 12c Pochorovski I. Milić J. Kolarski D. Gropp C. Schweizer WB. Diederich F. J. Am. Chem. Soc. 2014; 136: 3852
  • 13 Lagugné-Labarthet F. An YQ. Yu T. Shen YR. Dalcanale E. Shenoy DK. Langmuir 2005; 21: 7066
  • 14 Pochorovski I. Redox-Switchable Cavitands: Conformational Analysis and Binding Studies. PhD Thesis, ETH; Zürich: 2013
  • 15 Azov VA. Jaun B. Diederich F. Helv. Chim. Acta 2004; 87: 449
  • 16 Pagliusi P. Lagugné-Labarthet F. Shenoy DK. Dalcanale E. Shen YR. J. Am. Chem. Soc. 2006; 128: 12610
  • 17 Romer DR. J. Heterocycl. Chem. 2009; 46: 317
  • 18 Masseroni D. Rampazzo E. Rastrelli F. Orsi D. Ricci L. Ruggeri G. Dalcanale E. RSC Adv. 2015; 5: 11334
  • 19 Castro PP. Zhao G. Masangkay GA. Hernandez C. Gutierrez-Tunstad LM. Org. Lett. 2004; 6: 333
  • 20 Preparation of PBMA-2 In a Schlenk tube, n-butyl methacrylate (0.786 mL, 4.9 mmol) was added to a solution of cavitand 2 (0.077 g, 0.015 mmol) in 5 mL of toluene. The mixture was degassed and heated at 70 °C, then AIBN (0.014 g) was added. The mixture was maintained at 70 °C for 12 h, then cooled at room temperature. The copolymer was recovered by precipitation in MeOH, followed by trituration in the same solvent. Polymer PBMA-2 was obtained as a white solid (yield 84%). 1H NMR (300 MHz, CDCl3): δ = 8.65 (1 H, Ha), 8.17 (4 H, Hg), 8.10 (1 H, Hb), 7.82 (7 H, Hc + Hd), 7.52 (4 H, Hf), 7.42 (1 H, He), 7.33 (1 H, He), 7.24 (4 H, Hi), 5.58 (4 H, CHCH2), 4.48 (2 H, Ar(C=O)OCH 2CH2), 3.9 (OCH 2,PBMACH2), 2.27 (8 H, CHCH 2), 2.0–1.7 (-CH 2,PBMA-C(C=O)CH3), 1.6 (-CH2-C(C=O)CH 3,PBMA + OCH2CH 2,PBMA), 1.4 (OCH2CH2CH 2,PBMA), 1.1–0.8 (CH2CH 3,PBMA) ppm (see Figure S3 in the Supporting Information).
  • 21 Preparation of PBMA-3 In a Schlenk tube, n-butyl methacrylate (0.242 mL, 1.52 mmol) was added to a solution of cavitand 3 (0.027 g, 0.015 mmol) in 2 mL of toluene. The mixture was degassed and heated at 70 °C, then AIBN (0.005 g) was added. The mixture was maintained at 70 °C for 12 h, then cooled at room temperature. The copolymer was recovered by precipitation in MeOH followed by trituration in the same solvent. Polymer PBMA-3 was obtained as a white solid (yield 48%) 1H NMR (400 MHz, CDCl3): δ = 8.67 (2 H, Ha), 8.25–8.08 (6 H, Hf + Hb), 7.82 (6 H, Hc + Hd), 7.54 (1 H, He), 7.44 (2 H, He), 7.25 (5 H, Hg + He), 5.57 (m, 4 H, CHCH2), 4.47 (4 H, Ar(C=O)OCH 2CH2), 4.0 (OCH 2,PBMACH2), 2.29 (8 H, CHCH 2), 2.1–1.7 (-CH 2,PBMA-C(C=O)CH3), 1.6 (-CH2-C(C=O)CH 3,PBMA + OCH2CH 2,PBMA), 1.4 (OCH2CH2CH 2,PBMA), 1.0–0.8 (CH2CH 3,PBMA) ppm (see Figure S9 in the Supporting Information).
  • 22 PDMS Samples Preparation RTV 615 base (3.0 g) and a THF cavitand solution were homogenized with a Vortex in a 15 mL Falcon tube. RTV 615 curing agent (0.3 g) was added, and the tube was extensively shacked with a Vortex. The homogenous mixture was degassed under vacuum and poured onto a PTFE plate. After a second degassing, the sample was cured in an oven at 60 °C for 16 h. Once cured the film was peeled away and cut into stripes for testing.
    • 23a Pritchard RH. Lava P. Debruyne D. Terentjev EM. Soft Matter 2013; 9: 6037
    • 23b Blaber J. Adair B. Antoniou A. Exp. Mech. 2015; 55: 1105
    • 23c Palanca M. Tozzi G. Cristofolini L. Int. Biomech. 2016; 3: 1
  • 24 Condorelli GG. Motta A. Favazza M. Fragalà IL. Busi M. Menozzi E. Dalcanale E. Cristofolini L. Langmuir 2006; 22: 11126
  • 25 Brighenti R. Artoni F. Vernerey F. Torelli M. Pedrini A. Domenichelli I. Dalcanale E. J. Mech. Phys. Solids 2018; 113: 65