Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(16): 3187-3196
DOI: 10.1055/s-0037-1610023
DOI: 10.1055/s-0037-1610023
special topic
Regio- and Stereoselective Nickel-Catalyzed Coupling of Boronic Acids with Allenoates
Acknowledgment is made to University of Bologna for financial support. Y.L. thanks Chinese Scholarship Council No. 201609120008 for funding support.Further Information
Publication History
Received: 27 March 2018
Accepted after revision: 23 April 2018
Publication Date:
12 June 2018 (online)
Published as part of the Special Topic Modern Coupling Approaches and their Strategic Applications in Synthesis
Abstract
The Ni(II)-catalyzed cross-coupling of arylboronic acids with allenoates is documented. The high regio- and stereoselectivity of the process enables a wide range of β-aryl β,γ-unsaturated esters to be prepared in good to excellent yields (up to 95%) and high E/Z-selectivity. Additionally, [3+2]-cascade sequence was observed when 2-formylphenylboronic acid was employed.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610023.
- Supporting Information
-
References
- 1a Netherton MR. Fu GC. Adv. Synth. Catal. 2004; 346: 1525
- 1b Li Z. Liu L. Chin. J. Catal. 2015; 36: 3
- 1c Standley EA. Tasker SZ. Jensen KL. Jamison TF. Acc. Chem. Res. 2015; 48: 1503
- 1d Modern Organonickel Chemistry . Tamaru Y. Wiley-VCH; Weinheim: 2005
- 1e Henrion M. Ritleng V. Chetcuti MJ. ACS Catal. 2015; 5: 1283
- 1f Ananikov VP. ACS Catal. 2015; 5: 1964
- 1g Ritleng V. Henrion M. Chetcuti MJ. ACS Catal. 2016; 6: 890
- 2 Wang D. Astruc D. Chem. Soc. Rev. 2017; 46: 816
- 3a Tasker SZ. Standley EA. Jamison TF. Nature 2014; 509: 299
- 3b Wang X. Dai Y. Gong H. Top. Curr. Chem. 2016; 374: 43
- 3c Lee S.-C. Guo L. Yue H. Liao H.-H. Rueping M. Synlett 2017; 28: 2594
- 4 Richmond E. Moran J. Synthesis 2018; 50: 499
- 5a Jia M. Cera G. Perrotta D. Bandini M. Chem. Eur. J. 2014; 20: 9875
- 5b Romano C. Jia M. Monari M. Manoni E. Bandini M. Angew. Chem. Int. Ed. 2014; 53: 13854
- 5c Jia M. Monari M. Yang Q.-Q. Bandini M. Chem. Commun. 2015; 51: 2320
- 5d Rocchigiani L. Jia M. Bandini M. Macchioni A. ACS Catal. 2015; 5: 3911
- 5e Ocello R. De Nisi A. Jia M. Yang Q.-Q. Giacinto P. Bottoni A. Miscione GP. Bandini M. Chem. Eur. J. 2015; 21: 18445
- 5f Mastandrea MM. Mellonei N. Giacinto P. Collado A. Nolan SP. Miscione GP. Bottoni A. Bandini M. Angew. Chem. Int. Ed. 2015; 54: 14885
- 5g Giacinto P. Bottoni A. Garelli A. Miscione GP. Bandini M. ChemCatChem 2018; 10 DOI: in press; 10.1002/cctc.201701933.
- 6a Wang J. Qin T. Chen T.-G. Wimmer L. Edwards JT. Cornella J. Vokits B. Shaw SA. Baran PS. Angew. Chem. Int. Ed. 2016; 55: 9676
- 6b Guo L. Rueping M. Chem. Eur. J. 2016; 22: 16787
- 6c Xiao Y.-L. Min Q.-Q. Xu C. Wang R.-W. Zhang X. Angew. Chem. Int. Ed. 2016; 55: 5837
- 6d Gu J.-W. Min Q.-Q. Yu L.-C. Zhang X. Angew. Chem. Int. Ed. 2016; 55: 12270
- 6e Guo L. Liu X. Baumann C. Rueping M. Angew. Chem. Int. Ed. 2016; 55: 15415
- 6f Stache EE. Rovis T. Doyle AG. Angew. Chem. Int. Ed. 2017; 56: 3679
- 6g Ariki ZT. Maekawa Y. Nambo M. Crudden CM. J. Am. Chem. Soc. 2018; 140: 78
- 7 Liu Y. De Nisi A. Cerveri A. Monari M. Bandini M. Org. Lett. 2017; 19: 5034
- 8a Lu X. Zhang C. Xu Z. Acc. Chem. Res. 2001; 34: 535
- 8b Cowen BJ. Miller SJ. Chem. Soc. Rev. 2009; 38: 3102
- 8c Wang Z. Xu X. Kwon O. Chem. Soc. Rev. 2014; 43: 2927
- 8d Wei Y. Shi M. Chem. Asian J. 2014; 9: 2720
- 9a Lu Z. Chai G. Ma S. J. Am. Chem. Soc. 2007; 129: 14546
- 9b Chai G. Lu Z. Fu C. Ma S. Adv. Synth. Catal. 2009; 351: 1946
- 9c Lu Z. Chai G. Zhang X. Ma S. Org. Lett. 2008; 10: 3517
- 9d He J. Lu Z. Chai G. Fu C. Ma S. Tetrahedron 2012; 68: 2719
- 10a Ma S. Jiao N. Ye L. Chem. Eur. J. 2003; 9: 6049
- 10b Bai T. Ma S. Jia G. Tetrahedron 2007; 63: 6210
- 10c Qian R. Guo H. Liao Y. Guo Y. Ma S. Angew. Chem. Int. Ed. 2005; 44: 4771
- 10d Yu X. Lu X. Org. Lett. 2009; 11: 4366
- 10e Yu X. Lu X. J. Org. Chem. 2011; 76: 6350
- 11 Structure elucidation of 2ap was carried out by 1H NMR analysis.
- 12 Attempts to extend the intramolecural annulation to a three-component approach involving allenoate/boronic acid/aldehyde failed.
- 13 The inseparable allenoate/alkyne mixture is easily obtainable by a prolonged reaction time in the synthesis of compound 1.
- 14 Characterization of 1a gave data similar to that in the literature: Rout L. Harned AM. Chem. Eur. J. 2009; 15: 12926
For general reviews on Ni catalysis, see:
For a selection of Ni-catalyzed Suzuki-type cross-coupling, see: