Synlett 2018; 29(15): 1944-1956
DOI: 10.1055/s-0037-1610022
account
© Georg Thieme Verlag Stuttgart · New York

Proline-Catalyzed Asymmetric α-Amination in the Synthesis of Bioactive Molecules

Pradeep Kumar*
a   Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India   Email: pk.tripathi@ncl.res.in
b   Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
,
Brijesh M. Sharma
a   Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India   Email: pk.tripathi@ncl.res.in
b   Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
› Author Affiliations
B. M. S. thanks the Council of Scientific and Industrial Research (CSIR) for the award of a Senior Research Fellowship.
Moreover, the financial support in the form of INSA senior scientist program to P. K from INSA, New Delhi is gratefully acknowledged.
Further Information

Publication History

Received: 28 February 2018

Accepted after revision: 24 April 2018

Publication Date:
19 June 2018 (online)


Abstract

The direct α-amination of carbonyl compounds using organocatalysts represents a powerful and atom-economical tool for asymmetric C–N bond formation. We describe a complete account of α-functionalization of carbonyl compounds, through iterative sequential α-aminoxylation/amination using electrophilic O and N sources, as well as sequential α-amination/HWE reaction for enantio- and diastereoselective synthesis of both syn- and anti-1,3-aminoalcohols and 1,3-diamines. Additionally this protocol is further extended for the easy construction of alkaloids such as indolizidine, pyrrolizidine, and quinolizidine fused-ring systems just by tuning the chain length of the aldehyde used as a starting material. This methodology provides further scope to extrapolate it for a variety of naturally occurring hydroxylated monocyclic and fused bicyclic pyrrolidine and piperidine based alkaloids such as lentiginosine, epi-lentiginosine, dihydroxypyrrolizidine, (+)-deoxoprosophylline and (–)-deoxoprosopinine alkaloids. Furthermore, we have also uncovered proline-catalyzed anti-selectivity for the synthesis of 1,2-amino alcohols in α-amination of aldehyde and one-pot indium-mediated Barbier type allylation of α-hydrazino aldehydes to accomplish the total synthesis of clavaminols, sphinganine and spisulosine with reduced number of steps and with high overall yields.

1 Introduction

2 Application in the Total Synthesis of Alkaloids

3 Conclusion

 
  • References

    • 1a Newman DJ. Cragg GM. J. Nat. Prod. 2012; 75: 311
    • 1b Newman DJ. Cragg GM. J. Nat. Prod. 2016; 79: 629
    • 2a Li W. Zhang X. Stereoselective Formation of Amines . Vol. 343. Springer; Berlin: 2014
    • 2b Ji X. Huang H. Org. Biomol. Chem. 2016; 14: 10557
    • 3a Crimmins MT. King BW. Tabet EA. Chaudhary K. J. Org. Chem. 2001; 66: 894
    • 3b Roos G. Key Chiral Auxiliary Applications . Academic Press; Amsterdam: 2014
    • 3c Heravi MM. Zadsirjan V. Farajpour B. RSC Adv. 2016; 6: 30498
    • 4a France S. Guerin DJ. Miller SJ. Lectka T. Chem. Rev. 2003; 103: 2985
    • 4b Xu L.-W. Luo J. Lu Y. Chem. Commun. 2009; 1807
    • 4c Grondal C. Jeanty M. Enders D. Nat. Chem. 2010; 2: 167
    • 5a Cao Z.-Y. Brittain WD. G. Fossey JS. Zhou F. Catal. Sci. Technol. 2015; 5: 3441
    • 5b Xu Z. Daka P. Budik I. Wang H. Bai F.-Q. Zhang H.-X. Eur. J. Org. Chem. 2009; 4581
    • 6a Robertson J. Stevens K. Nat. Prod. Rep. 2014; 31: 1721
    • 6b Behenna DC. Liu Y. Yurino T. Kim J. White DE. Virgil SC. Stoltz BM. Nat. Chem. 2012; 4: 130
    • 6c Stevenazzi A. Marchini M. Sandrone G. Vergani B. Lattanzio M. Bioorg. Med. Chem. Lett. 2014; 24: 5349
    • 7a Nugent TC. El-Shazly M. Adv. Synth. Catal. 2010; 352: 753
    • 7b Johannsen M. Jørgensen KA. Chem. Rev. 1998; 98: 1689
    • 7c Wang J. Liu X. Feng X. Chem. Rev. 2011; 111: 6947
    • 7d List B. Chem. Rev. 2007; 107: 5413
    • 7e Raoufmoghaddam S. Org. Biomol. Chem. 2014; 12: 7179
    • 7f Zheng C. You S.-L. Chem. Soc. Rev. 2012; 41: 2498
    • 8a Evans DA. Nelson SG. J. Am. Chem. Soc. 1997; 119: 6452
    • 8b Yamashita Y. Ishitani H. Kobayashi S. Can. J. Chem. 2000; 78: 666
    • 8c Evans DA. Johnson DS. Org. Lett. 1999; 1: 595
  • 9 Vilaivan T. Bhanthumnavin W. Molecules 2010; 15: 917
    • 10a MacMillan DW. C. Nature 2008; 455: 304
    • 10b Notz W. Tanaka F. Barbas CF. Acc. Chem. Res. 2004; 37: 580
    • 10c Sunoj RB. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011; 1: 920
    • 10d Gaunt MJ. Johansson CC. C. McNally A. Vo NT. Drug Discovery Today 2007; 12: 8
  • 11 List B. J. Am. Chem. Soc. 2002; 124: 5656
  • 12 Kumaragurubaran N. Juhl K. Zhuang W. Bøgevig A. Jørgensen KA. J. Am. Chem. Soc. 2002; 124: 6254
    • 13a Franzén J. Marigo M. Fielenbach D. Wabnitz TC. Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 18296
    • 13b Hayashi Y. Gotoh H. Hayashi T. Shoji M. Angew. Chem. Int. Ed. 2005; 44: 4212
    • 14a Clemente FR. Houk KN. Angew. Chem. Int. Ed. 2004; 43: 5766
    • 14b Rankin KN. Gauld JW. Boyd RJ. J. Phys. Chem. A 2002; 106: 5155
    • 14c List B. Hoang L. Martin HJ. Proc. Natl. Acad. Sci. 2004; 101: 5839
    • 14d Ashley MA. Hirschi JS. Izzo JA. Vetticatt MJ. J. Am. Chem. Soc. 2016; 138: 1756
  • 15 Bahmanyar S. Houk KN. J. Am. Chem. Soc. 2001; 123: 12911
    • 16a Rychnovsky SD. Chem. Rev. 1995; 95: 2021
    • 16b Newman DJ. Cragg GM. J. Nat. Prod. 2004; 67: 1216
    • 16c Weissman KJ. Muller R. Nat. Prod. Rep. 2010; 27: 1276
  • 17 Kondekar NB. Kumar P. Org. Lett. 2009; 11: 2611
  • 18 Kumar P. Dwivedi N. Acc. Chem. Res. 2013; 46: 289
  • 19 Kumar P. Jha V. Gonnade R. J. Org. Chem. 2013; 78: 11756
  • 20 Kotkar SP. Chavan VB. Sudalai A. Org. Lett. 2007; 9: 1001
  • 21 Jha V. Kondekar NB. Kumar P. Org. Lett. 2010; 12: 2762
  • 22 Mullican M. Lauffer D. Tung R. US Patent 7105546B2, 2006
    • 23a Kondekar NB. Kumar P. Synthesis 2010; 3105
    • 23b Upadhyay PK. Prasad R. Pandey M. Kumar P. Tetra­hedron Lett. 2009; 50: 2440
  • 24 Michel K. Sandberg F. Haglid F. Norin T. Acta Pharm. Suec. 1967; 4: 97
    • 25a Ahmad VU. Nasir MA. Phytochemistry 1987; 26: 585
    • 25b Mill S. Hootelé C. J. Nat. Prod. 2000; 63: 762
  • 26 Merlin P. Braekman JC. Daloze D. Pasteels J. J. Chem. Ecol. 1988; 14: 517
  • 27 Hart N. Johns S. Lamberton J. Aust. J. Chem. 1972; 25: 817
  • 28 Airiau E. Girard N. Pizzeti M. Salvadori J. Taddei M. Mann A. J. Org. Chem. 2010; 75: 8670
  • 29 Tufariello JJ. Ali SA. Tetrahedron Lett. 1979; 4445
  • 30 Jha V. Kumar P. RSC Adv. 2014; 4: 3238
  • 31 Sulser H. Sager F. Experientia 1976; 32: 422
    • 32a Bhosale VA. Markad SB. Waghmode SB. Tetrahedron 2017; 73: 5344
    • 32b Platonova T. Kuzovkov A. Med. Prom. SSSR 1963; 17: 19
    • 32c Fitzgerald J. Aust. J. Chem. 1965; 18: 589
    • 32d San Martín A. Rovirosa J. Gambaro V. Castillo M. Phytochemistry 1980; 19: 2007
  • 33 Jha V. Kumar P. Synlett 2014; 25: 1089
  • 34 Kolter T. Sandhoff K. Angew. Chem. Int. Ed. 1999; 38: 1532
    • 35a Asano N. Glycobiology 2003; 13: 93R
    • 35b Winchester B. Fleet GW. J. Glycobiology 1992; 2: 199
  • 36 Jha V. Kauloorkar SV. Eur. J. Org. Chem. 2014; 4897
  • 38 Majik MS. Shet J. Tilve SG. Parameswaran PS. Synthesis 2007; 663
  • 39 Kauloorkar SV. Jha V. Kumar P. RSC Adv. 2013; 3: 18288
  • 40 Pastuszak I. Molyneux RJ. James LF. Elbein AD. Biochemistry 1990; 29: 1886
  • 41 Kauloorkar SV. Jha V. Jogdand G. Kumar P. Org. Biomol. Chem. 2014; 12: 4454
  • 42 Zhong G. Chem. Commun. 2004; 606
  • 43 Paquette LA. Mitzel TM. Isaac MB. Crasto CF. Schomer WW. J. Org. Chem. 1997; 62: 4293
  • 44 Lim A. Choi JH. Tae J. Tetrahedron Lett. 2008; 49: 4882
  • 45 Pandey M. Chowdhury PS. Dutta AK. Kumar P. Pal S. RSC Adv. 2013; 3: 15442
  • 46 Aher RD. Sudalai A. Tetrahedron Lett. 2016; 57: 2021
  • 47 Bates RW. Dewey MR. Org. Lett. 2009; 11: 3706
  • 49 Kumar BS. Venkataramasubramanian V. Sudalai A. Org. Lett. 2012; 14: 2468
  • 50 Petakamsetty R. Jain VK. Majhi PK. Ramapanicker R. Org. Biomol. Chem. 2015; 13: 8512
  • 51 Nuzzi A. Massi A. Dondoni A. Org. Lett. 2008; 10: 4485