Synthesis 2018; 50(16): 3114-3130
DOI: 10.1055/s-0037-1610006
short review
© Georg Thieme Verlag Stuttgart · New York

From Natural to Artificial Antitumor Lipidic Alkynylcarbinols: Asymmetric Synthesis, Enzymatic Resolution, and Refined SARs

Dymytrii Listunov
a   CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France   Email: valerie.maraval@lcc-toulouse.fr   Email: chauvin@lcc-toulouse.fr
b   Université de Toulouse, UPS, ICT-FR 2599, 31062 Toulouse Cedex 9, France
,
Etienne Joly
c   UMR CNRS 5089, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 Route de Narbonne, 31077 Toulouse Cedex 4, France
,
Pauline Rullière
d   UMR CNRS 5068, LSPCMIB, Université de Toulouse, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France   Email: genisson@chimie.ups-tlse.fr
,
Hafida Gaspard
d   UMR CNRS 5068, LSPCMIB, Université de Toulouse, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France   Email: genisson@chimie.ups-tlse.fr
,
Vania Bernardes-Génisson
a   CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France   Email: valerie.maraval@lcc-toulouse.fr   Email: chauvin@lcc-toulouse.fr
b   Université de Toulouse, UPS, ICT-FR 2599, 31062 Toulouse Cedex 9, France
,
Yves Génisson*
d   UMR CNRS 5068, LSPCMIB, Université de Toulouse, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France   Email: genisson@chimie.ups-tlse.fr
,
Valérie Maraval*
a   CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France   Email: valerie.maraval@lcc-toulouse.fr   Email: chauvin@lcc-toulouse.fr
b   Université de Toulouse, UPS, ICT-FR 2599, 31062 Toulouse Cedex 9, France
,
a   CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France   Email: valerie.maraval@lcc-toulouse.fr   Email: chauvin@lcc-toulouse.fr
b   Université de Toulouse, UPS, ICT-FR 2599, 31062 Toulouse Cedex 9, France
› Author Affiliations
The Toulouse IDEX ‘Transversalité’ program 2015 is acknowledged for funding (Fishing-sponge project). The CNRS and the French Embassy in Kyiv (Ukraine) are acknowledged for their early contribution to the fellowship of D.L. P.R. is grateful to the ARC foundation for cancer research for postdoctoral funding.
Further Information

Publication History

Received: 07 April 2018

Accepted: 10 April 2018

Publication Date:
20 July 2018 (online)


Abstract

Among acetylenic natural products, chiral lipidic alkynylcarbinol (LAC) metabolites, mostly extracted from marine sponges, have revealed a broad spectrum of biological activities, in particular, remarkable antitumor cytotoxicity. With reference to one of the simplest natural representatives, [(S)-eicos-(4E)-en-1-yn-3-ol], and a given cancer cell line (HCT116), combined extensive efforts in chemical synthesis (relying on the use of a large chemical toolbox) and biological analysis (in vitro tests), have provided systematic structure–activity relationships (SARs) where the initially selected four structural parameters appear as independent principal components: (i) and (ii) the sp/sp2 content and extent of the terminal and internal unsaturations adjacent to the carbinol center, (iii) the absolute configuration of the latter, (iv) the length of the n-aliphatic backbone. Two key criteria have also been established regarding the functional alkynylcarbinol pharmacophore: the alkynylcarbinol unit must be both secondary and terminal (i.e., substituted by a short ethynyl or ethenyl C2 group). This review is intended to provide a further illustration of the value of a simple rational approach for drug design, and to act as a benchmark for future optimization of LACs as antitumor agents.

1 Introduction

2 2C2-Unsaturated Pharmacophore Candidates

2.1 Alkenylalkynylcarbinols (AACs)

2.2 Dialkynylcarbinols (DACs or DACys)

2.3 Alkynylalkenylcarbinols (iso-AACs) and Dialkenylcarbinols (DACes)

2.4 Oxidation-Protected Dialkynylcarbinols and Dialkynylketones

2.5 Fluorophore-Labeled Lipidic Dialkynylcarbinols

3 C2/C3-Unsaturated Pharmacophore Candidates

3.1 Cyclopropylalkynylcarbinols (CACs)

3.2 Allenylalkynylcarbinols (AllACs)

4 C2/C4- and 3C2-Unsaturated Pharmacophore Candidates

4.1 Butadiynylalkynylcarbinols (BACs)

4.2 Trialkynylcarbinols (TACs)

5 Double-AC-Headed Pharmacophore Candidates

6 Screening on the Lipidic Chain Length

7 Conclusion