Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(14): 1926-1932
DOI: 10.1055/s-0037-1609555
DOI: 10.1055/s-0037-1609555
letter
Base-Promoted Tandem Cyclization for the Synthesis of Polyfunctional 2-Hydroxy-2,3-dihydrofurans from Arylglyoxal Monohydrates and 3-(1H-Indol-3-yl)-3-oxopropanenitrile
21673166We would like to thank the National Natural Science Foundation of China (Grant 21272085, 21673166) for their generous financial support.
Further Information
Publication History
Received: 01 May 2018
Accepted after revision: 12 June 2018
Publication Date:
09 August 2018 (online)
Abstract
An efficient base-promoted tandem cyclization for the synthesis of polyfunctional 2-hydroxy-2,3-dihydrofurans from arylglyoxal monohydrates and 3-(1H-indol-3-yl)-3-oxopropanenitrile has been established. The investigation of the mechanism suggested that this reaction proceeds through a Knoevenagel condensation–Michael addition–oxidation–cyclization sequence. This method demonstrates the compatibility with a wide range of functional groups to produce the 2-hydroxy-2,3-dihydrofuran scaffolds in good to excellent yields in one pot.
Key words
2-hydroxy-2,3-dihydrofurans - tandem cyclization - arylglyoxal monohydrates - 3-(1H-indol-3-yl)-3-oxopropanenitrile - one potSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609555.
- Supporting Information
-
References and Notes
- 1a Santos EA. Quintela AL. Ferreira EG. Sousa TS. Pinto F. Hajdu E. Carvalho MS. Salani S. Rocha DD. Wilke DV. Torres Mda C. Jimenez PC. Silveira ER. La Clair JJ. Pessoa OD. Costa-Lotufo LV. J. Nat. Prod. 2015; 78: 996
- 1b Li H. Zhao M. Su G. Lin L. Wang Y. J. Agric. Food Chem. 2016; 64: 4725
- 1c Wegener S. Bornik MA. Kroh LW. J. Agric. Food Chem. 2015; 63: 6457
- 1d Mahidol C. Prawat H. Sangpetsiripan S. Ruchirawat S. J. Nat. Prod. 2009; 72: 1870
- 1e Tsukamoto S. Miura S. van Soest RW. M. Ohta T. J. Nat. Prod. 2003; 66: 438
- 1f Ueda A. Yamamoto A. Kato D. Kishi Y. J. Am. Chem. Soc. 2014; 136: 5171
- 1g Oblak EZ. VanHeyst MD. Li J. Wiemer AJ. Wright DL. J. Am. Chem. Soc. 2014; 136: 4309
- 1h Cafieri F. Fattorusso E. Taglialatela-Scafati O. Ianaro A. Tetrahedron 1999; 55: 7045
- 2a Cho JY. Kwon HC. Williams PG. Kauffman CA. Jensen PR. Fenical W. J. Nat. Prod. 2006; 69: 425
- 2b Bromley CL. Popplewell WL. Pinchuck SC. Hodgson AN. Davies-Coleman MT. J. Nat. Prod. 2012; 75: 497
- 2c Montagnac A. Martin MT. Debitus C. Païs M. J. Nat. Prod. 1996; 59: 866
- 2d Barrero AF. Cortés M. Manzaneda EA. Cabrera E. Chahboun R. Lara M. Rivas AR. J. Nat. Prod. 1999; 62: 1488
- 2e Elsinghorst PW. Cavlar T. Müller A. Braune A. Blaut M. Gütschow M. J. Nat. Prod. 2011; 74: 2243
- 2f Jahromi MA. F. Ray AB. Chansouria JP. N. J. Nat. Prod. 1993; 56: 989
- 2g Manickam M. Ramanathan M. Farboodniay Jahromi MA. Chansouria JP. N. Ray AB. J. Nat. Prod. 1997; 60: 609
- 2h Krenn L. Presser A. Pradhan R. Bahr B. Paper DH. Mayer KK. Kopp B. J. Nat. Prod. 2003; 66: 1107
- 3 Schreiber SL. Kelly SE. Porco JA. Jr. Sammakia T. Suh EM. J. Am. Chem. Soc. 1988; 110: 6210
- 4 Capon RJ. Faulkner DJ. J. Org. Chem. 1984; 49: 2506
- 5 Okanya PW. Mohr KI. Gerth K. Kessler W. Jansen R. Stadler M. Müller R. J. Nat. Prod. 2014; 77: 1420
- 6 Das S. Koley P. Pramanik A. Tetrahedron Lett. 2011; 52: 3243
- 7 Bergeron RI. Cavanaugh PF. Jr. Kline SJ. Hughes RG. Jr. Elliott GT. Porter CW. Biochem. Biophys. Res. Commun. 1984; 121: 848
- 8a Barjau J. Schnakenburg G. Waldvogel SR. Angew. Chem. Int. Ed. 2011; 50: 1415
- 8b Mukaiyama T. Ishikawa H. Koshino H. Hayashi Y. Chem. Eur. J. 2013; 19: 17789
- 8c Tyurin RV. Kosygina OV. Mezheritskii VV. Russ. J. Org. Chem. 2009; 45: 848
- 8d Debnath K. Pathak S. Pramanik A. Tetrahedron Lett. 2014; 55: 1743
- 8e Hirose S. Tomatsu K. Yanase E. Tetrahedron Lett. 2013; 54: 7040
- 8f Suzuki M. Imai K. Wakabayashi H. Arita A. Johmoto K. Uekusa H. Kobayashi K. Tetrahedron 2011; 67: 5500
- 9 Hartmann O. Kalesse M. Org. Lett. 2012; 14: 3064
- 10 Zhang ZG. Dai ZH. Jiang XF. Asian J. Org. Chem. 2016; 5: 52
- 11 Fu Q. Yan C.-G. Tetrahedron 2013; 69: 5841
- 12a Smith LI. Holum JR. J. Am. Chem. Soc. 1956; 78: 3417
- 12b Hwu JR. Sambaiah T. Chakraborty SK. Tetrahedron Lett. 2003; 44: 3167
- 12c Peter M. Gleiter R. Rominger F. Oeser T. Eur. J. Org. Chem. 2004; 3212
- 12d Jensen KL. Franke PT. Nielsen LT. Daasbjerg K. Jørgensen KA. Angew. Chem. Int. Ed. 2010; 49: 129
- 12e Gao QH. Wu X. Liu S. Wu AX. Org. Lett. 2014; 16: 1732
- 12f Uchida R. Lee D. Suwa I. Ohtawa M. Watanabe N. Demachi A. Ohte S. Katagiri T. Nagamitsu T. Tomoda H. Org. Lett. 2017; 19: 5980
- 13a Mase N. Horibe T. Org. Lett. 2013; 15: 1854
- 13b Su C. Chen Z.-C. Zhen Q.-G. Synthesis 2003; 555
- 13c Ogiwara Y. Takahashi K. Kitazawa T. Sakai N. J. Org. Chem. 2015; 80: 3101
- 13d Yadav JS. Reddy BS. S. Basak AK. Visali B. Narsaiah AV. Nagaiah K. Eur. J. Org. Chem. 2004; 546
- 14 Typical Procedure for the Synthesis of 3a A mixture of phenylglyoxal monohydrate (1a, 0.5 mmol), 3-(1H-indol-3-yl)-3-oxopropanenitrile (2a, 1.0 mmol), and K2CO3 (1.0 mmol) in DMSO (3 mL) was stirred at 80 °C for 2 h till almost completed conversion of the substrates by TLC analysis, then 30% NaCl solution (50 mL) was added to the mixture, which was then extracted with EtOAc three times (3 × 50 mL). The extract was dried over anhydrous Na2SO4 and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford the product 3a (221.7 mg, 92%) as a yellow solid. (E)-4-[2-(1H-Indol-3-yl)-2-oxoethylidene]-5-hydroxy-2-(1H-indol-3-yl)-5-phenyl-4,5-dihydrofuran-3-carbonitrile (3a) Yield 92%, 221.7 mg; yellow solid; mp 255.5–257.3 °C. 1H NMR (600 MHz, DMSO-d 6): δ = 12.75 (s, 1 H), 12.21 (s, 1 H), 9.65 (s, 1 H), 8.68 (s, 1 H), 8.22 (s, 1 H), 8.14 (d, J = 7.8 Hz, 1 H), 7.87 (d, J = 7.8 Hz, 1 H), 7.72–7.64 (m, 2 H), 7.61 (d, J = 8.4 Hz, 1 H), 7.54 (d, J = 7.8 Hz, 1 H), 7.54–7.44 (m, 3 H), 7.33–7.23 (m, 4 H).13C NMR (100 MHz, DMSO-d 6): δ = 180.1, 173.8, 159.6, 137.0, 136.7, 136.1, 136.0, 135.2, 129.6, 128.3, 125.6, 125.0, 124.7, 123.9, 123.3, 123.0, 122.2, 121.3, 121.2, 116.8, 115.7, 114.5, 113.2, 113.0, 112.4, 103.4, 96.6, 79.4. IR (KBr): 3424, 3265, 2208, 1610, 1523, 1483, 1430, 1307, 1235, 745 cm–1. HRMS (ESI): m/z [M + H]+ calcd for C30H19N4O3: 483.1452; found: 483.1449. (E)-4-[2-(1H-Indol-3-yl)-2-oxoethylidene]-5-hydroxy-2-(1H-indol-3-yl)-5-(4-nitrophenyl)-4,5-dihydrofuran-3-carbonitrile (3e) Yield 85%, 224.0 mg; yellow solid; mp 249.3–250.1 °C. 1H NMR (600 MHz, DMSO-d 6): δ = 12.84 (s, 1 H), 12.25 (s, 1 H), 10.07 (s, 1 H), 8.74 (s, 1 H), 8.44–8.34 (m, 2 H), 8.26 (s, 1 H), 8.20–8.13 (m, 1 H), 8.03–7.93 (m, 2 H), 7.86 (d, J = 6.0 Hz, 1 H), 7.68–7.61 (m, 1 H), 7.58–7.53 (m, 1 H), 7.35–7.22 (m, 4 H).13C NMR (150 MHz, DMSO-d 6): δ = 180.1, 174.1, 159.1, 148.4, 143.4, 137.0, 136.3, 135.8, 127.6, 125.3, 124.8, 124.3, 123.9, 123.6, 123.4, 122.5, 122.3, 121.5, 121.4, 116.9, 115.8, 114.4, 113.5, 112.6, 111.7, 103.5, 96.9, 79.8. IR (KBr): 3387, 3256, 2205, 1607, 1563, 1525, 1427, 1348, 1304, 1235, 1206, 1143, 979, 744 cm–1. HRMS (ESI): m/z [M + H]+ calcd for C30H18N5O5: 528.1302; found: 528.1296. (E)-4-[2-(1H-Indol-3-yl)-2-oxoethylidene]-5-(4-chlorophenyl)-5-hydroxy-2-(1H-indol-3-yl)-4,5-dihydrofuran-3-carbonitrile (3h) Yield 80%, 206.4 mg; yellow solid; mp 245.0–246.3 °C. 1H NMR (600 MHz, DMSO-d 6): δ = 12.77 (s, 1 H), 12.20 (s, 1 H), 9.78 (s, 1 H), 8.68 (s, 1 H), 8.21 (s, 1 H), 8.14 (d, J = 5.4 Hz, 1 H), 7.85 (d, J = 8.4 Hz, 1 H), 7.67 (d, J = 7.2 Hz, 2 H), 7.63–7.49 (m, 4 H), 7.34–7.22 (m, 4 H).13C NMR (150 MHz, DMSO-d 6): δ = 180.4, 174.2, 159.6, 136.4, 136.2, 135.6, 134.7, 128.7, 128.0, 125.4, 124.9, 124.3, 123.6, 123.3, 122.5, 121.5, 117.0, 115.9, 114.6, 113.5, 113.3, 112.6, 103.6, 96.8, 79.7, 56.2. IR (KBr): 3427, 2208, 1610, 1570, 1525, 1486, 1427, 1308, 1235, 1140, 745 cm–1. HRMS (ESI): m/z [M + Na]+ calcd for C30H17ClN4NaO3: 539.0881; found: 539.0885. (E)-4-[2-(1H-Indol-3-yl)-2-oxoethylidene]-5-hydroxy-2-(1H-indol-3-yl)-5-(thiophen-3-yl)-4,5-dihydrofuran-3-carbonitrile (3j) Yield 75%, 183.0 mg; yellow solid; mp 267.9–269.3 °C. 1H NMR (600 MHz, DMSO-d 6): δ = 12.77 (s, 1 H), 12.26 (s, 1 H), 9.63 (s, 1 H), 8.73 (s, 1 H), 8.31 (s, 1 H), 8.25–8.18 (m, 1 H), 7.97 (d, J = 6.0 Hz, 1 H), 7.90 (s, 1 H), 7.67–7.61 (m, 2 H), 7.58 (d, J = 5.4 Hz, 1 H), 7.34–7.26 (m, 5 H).13C NMR (150 MHz, DMSO-d 6): δ = 180.6, 173.8, 159.4, 138.8, 137.1, 136.4, 135.5, 135.4, 127.5, 125.8, 125.5, 125.0, 124.2, 123.6, 123.3, 122.6, 121.5, 117.1, 116.1, 116.0, 114.8, 113.5, 112.6, 111.7, 103.8, 96.8, 79.3. IR (KBr): 3260, 2204, 1613, 1568, 1509, 1481, 1434, 1304, 1237, 1207, 1146, 1023, 742 cm–1. HRMS (ESI): m/z [M + H]+ calcd for C28H18N4O3S: 489.1016; found: 489.1015. (E)-5-Hydroxy-2-(1-methyl-1H-indol-3-yl)-4-[2-(1-methyl-1H-indol-3-yl)-2-oxoethylidene]-5-phenyl-4,5-dihydrofuran-3-carbonitrile (3k) Yield 91%, 232.1 mg; yellow solid; mp 244.1–245.2 °C. 1H NMR (600 MHz, DMSO-d 6): δ = 9.65 (s, 1 H), 8.67 (s, 1 H), 8.20 (s, 1 H), 8.15 (d, J = 5.4 Hz, 1 H), 7.89 (d, J = 7.8 Hz, 1 H), 7.75–7.63 (m, 3 H), 7.60 (d, J = 7.2 Hz, 1 H), 7.55–7.46 (m, 3 H), 7.39–7.33 (m, 2 H), 7.32–7.27 (m, 2 H), 3.98 (s, 3 H), 3.91 (s, 3 H).13C NMR (150 MHz, DMSO-d 6): δ = 179.9, 173.6, 160.2, 139.0, 138.3, 137.6, 137.2, 137.0, 129.8, 128.5, 125.8, 125.7, 125.3, 124.2, 123.6, 123.5, 122.7, 121.6, 116.9, 114.7, 114.4, 113.1, 111.9, 111.0, 102.5, 96.5, 79.6, 34.1, 33.6. IR (KBr): 3437, 3226, 2189, 1580, 1535, 1471, 1365, 1244, 746 cm-1. HRMS (ESI): m/z [M + Na]+ calcd for C32H22N4NaO3: 533.1584; found: 533.1576. (E)-5-(3-Bromophenyl)-5-hydroxy-2-(1-methyl-1H-indol-3-yl)-4-[2-(1-methyl-1H-indol-3-yl)-2-oxoethylidene]-4,5-dihydrofuran-3-carbonitrile (3p) Yield 80%, 235.6 mg; yellow solid; mp 235.4–237.1 °C. 1H NMR (600 MHz, DMSO-d 6): δ = 9.85 (s, 1 H), 8.68 (s, 1 H), 8.19 (s, 1 H), 8.15 (d, J = 6.6 Hz, 1 H), 7.89 (d, J = 7.8 Hz, 1 H), 7.72 (d, J = 5.4 Hz, 1 H), 7.69 (d, J = 6.6 Hz, 1 H), 7.62–7.57 (m, 2 H), 7.50–7.45 (m, 1 H), 7.43–7.24 (m, 5 H), 3.99 (s, 3 H), 3.91 (s, 3 H).13C NMR (150 MHz, DMSO-d 6): δ = 179.7, 173.6, 159.8, 139.5, 139.1, 138.6, 138.5, 137.6, 137.5, 137.1, 132.9, 131.0, 128.7, 125.7, 125.2, 125.0, 124.3, 123.7, 123.6,122.6, 121.6, 116.9, 114.7, 114.3, 111.9, 111.1, 102.5, 96.5, 79.8, 34.2, 33.6. IR (KBr): 3443, 2197, 1522, 1462, 1363, 1321, 1226, 1087, 748 cm–1. HRMS (ESI): m/z [M + H]+ calcd for C32H22BrN4O3: 589.0870; found: 589.0877. (E)-5-Hydroxy-2-(1-methyl-1H-indol-3-yl)-4-[2-(1-methyl-1H-indol-3-yl)-2-oxoethylidene]-5-(naphthalen-2-yl)-4,5-dihydrofuran-3-carbonitrile (3r) Yield 88%, 246.4 mg; yellow solid; mp 228.8–230.0 °C. 1H NMR (600 MHz, DMSO-d 6): δ = 9.84 (s, 1 H), 8.68 (s, 1 H), 8.18 (s, 1 H), 8.14 (d, J = 7.2 Hz, 1 H), 7.88 (d, J = 8.4 Hz, 2 H), 7.73–7.68 (m, 2 H), 7.60 (t, J = 8.4 Hz, 3 H), 7.48 (t, J = 7.2 Hz, 1 H), 7.44–7.25 (m, 6 H), 3.99 (s, 3 H), 3.91 (s, 3 H). 13C NMR (150 MHz, DMSO-d 6): δ = 179.7, 173.6, 159.8, 139.6, 139.0, 138.6, 137.6, 137.1, 132.8, 130.9, 128.8, 125.8, 125.2, 125.0, 124.2, 123.7, 123.6, 122.8, 121.7, 121.6, 116.9, 114.7, 114.3, 111.9, 111.0 , 102.5, 96.6, 79.8, 79.2, 59.8, 34.1, 33.6, 20.8, 14.1. IR (KBr): 3235, 2188, 1650, 1387, 1232, 1125, 1085, 748 cm–1. HRMS (ESI): m/z [M + H]+ calcd for C36H25N4O3: 561.1921; found: 561.1915. (E)-5-Hydroxy-2-(6-methyl-1H-indol-3-yl)-4-[2-(6-methyl-1H-indol-3-yl)-2-oxoethylidene]-5-phenyl-4,5-dihydrofuran-3-carbonitrile (3u) Yield 84%, 214.2 mg; yellow solid; mp 230.1–232.1 °C. 1H NMR (600 MHz, DMSO-d 6): δ = 12.64 (s, 1 H), 12.08 (s, 1 H), 9.63 (s, 1 H), 8.62 (s, 1 H), 8.15 (s, 1 H), 8.02 (d, J = 7.8 Hz, 1 H), 7.75 (d, J = 8.4 Hz, 1 H), 7.66 (d, J = 6.0 Hz, 2 H), 7.53–7.48 (m, 3 H), 7.41 (s, 1 H), 7.33 (s, 1 H), 7.08 (d, J = 8.4 Hz, 2 H), 2.44 (s, 3 H), 2.41 (s, 3 H).13C NMR (100 MHz, DMSO-d 6): δ = 180.1, 173.7, 159.6, 139.1, 136.7, 136.0, 135.9, 134.1, 128.7, 125.5, 125.1, 124.6, 123.8, 123.2, 122.9, 122.1, 121.2, 116.7, 115.6, 114.4, 113.1, 112.3, 103.4, 96.5, 79.3, 56.0, 21.0, 18.7. IR (KBr): 3265, 2205, 1571, 1536, 1503, 1440, 1237, 1018, 765 cm–1. HRMS (ESI): m/z [M + Na]+ calcd for C32H22N4NaO3: 533.1584; found: 533.1580.
For representative references, see: