Subscribe to RSS
DOI: 10.1055/s-0037-1609547
Effect of γ-Substituted Proline Derivatives on the Performance of the Peptidic Catalyst H-dPro-Pro-Glu-NH2
Swiss National Science Foundation (Grant No. 200020_169423) and Fonds der Chemischen Industrie (Germany).Publication History
Received: 27 May 2018
Accepted after revision: 18 June 2018
Publication Date:
02 July 2018 (online)
Dedicated to Professor Scott E. Denmark
Published as part of the Special Section dedicated to Scott E. Denmark on the occasion of his 65th birthday
Abstract
Substituents at Cγ of proline are valuable probes to tune the trans/cis ratio of Xaa–Pro bonds. We investigated the effect of Cγ-substituents on the reactivity and stereoselectivity of the peptidic catalyst H-dPro-Pro-Glu-NH2. Derivatives that bear electron-withdrawing and -donating substituents (OH, F, N3, and SMe) at Cγ of the middle Pro-residue were examined. The results show that substituents at a 4R-configured Cγ hardly affect the stereoselectivity of the peptidic catalyst whereas substituents at a 4S-configured Cγ can be used to tune and improve the catalytic performance.
Key words
proline - peptides - trans/cis isomerization - organocatalysis - conjugate addition reactionsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609547.
- Supporting Information
-
References
- 1a Davie EA. C. Mennen SM. Xu Y. Miller S. J. Chem. Rev. 2007; 107: 5759
- 1b Wennemers H. Chem. Commun. 2011; 47: 12036
- 1c Lewandowski B. Wennemers H. Curr. Opin. Chem. Biol. 2014; 22: 40
- 1d Akagawa K. Kudo K. Acc. Chem. Res. 2017; 50: 2429
- 1e Shugrue CR. Miller SJ. Chem. Rev. 2017; 117: 11894
- 2a Martin HJ. List B. Synlett 2003; 1901
- 2b Müller CE. Zell D. Schreiner PR. Chem. Eur. J. 2009; 15: 9647
- 2c Gustafson JL. Lim D. Miller SJ. Science 2010; 328: 1251
- 2d Weyer A. Diaz D. Nierth A. Schlörer NE. Berkessel A. ChemCatChem 2012; 4: 337
- 2e Akagawa K. Kudo K. Angew. Chem. Int. Ed. 2012; 51: 12786
- 2f Barrett KT. Metrano AJ. Rablen PR. Miller SJ. Nature 2014; 509: 71
- 2g Akagawa K. Sakai N. Kudo K. Angew. Chem. Int. Ed. 2015; 54: 1822
- 2h Shugrue CR. Miller SJ. Angew. Chem. Int. Ed. 2015; 54: 11173
- 2i Wende RC. Seitz A. Niedek D. Schuler SM. M. Hofmann C. Becker J. Schreiner PR. Angew. Chem. Int. Ed. 2016; 55: 2719
- 2j Kwon Y. Chinn AJ. Kim B. Miller SJ. Angew. Chem. Int. Ed. 2018; 57: 6251
- 3a Krattiger P. Kovasy R. Revell JD. Ivan S. Wennemers H. Org. Lett. 2005; 7: 1101
- 3b Schnitzer T. Wiesner M. Krattiger P. Revell JD. Wennemers H. Org. Biomol. Chem. 2017; 15: 5877
- 3c Messerer M. Wennemers H. Synlett 2011; 499
- 4a Wiesner M. Revell JD. Wennemers H. Angew. Chem. Int. Ed. 2008; 47: 1871
- 4b Wiesner M. Neuburger M. Wennemers H. Chem. Eur. J. 2009; 15: 10103
- 4c Wiesner M. Upert G. Angelici G. Wennemers H. J. Am. Chem. Soc. 2010; 132: 6
- 5a Wiesner M. Revell JD. Tonazzi S. Wennemers H. J. Am. Chem. Soc. 2008; 130: 5610
- 5b Duschmale J. Wennemers H. Chem. Eur. J. 2012; 18: 1111
- 5c Kastl R. Wennemers H. Angew. Chem. Int. Ed. 2013; 52: 7228
- 6a Grünenfelder C. Kisunzu J. Wennemers H. Angew. Chem. Int. Ed. 2016; 55: 857
- 6b Schnitzer T. Wennemers H. Synlett 2017; 28: 1282
- 7 Schnitzer T. Wennemers H. J. Am. Chem. Soc. 2017; 139: 15356
- 8a Koskinen AM. P. Heliaja J. Kumpulainen ET. T. Koivisto J. Mansikkamaeki H. Rissanen K. J. Org. Chem. 2005; 70: 6447
- 8b Shoulders MD. Hodges JA. Raines RT. J. Am. Chem. Soc. 2006; 128: 8112
- 8c Shoulders MD. Satyshur KA. Forest KT. Raines RT. Proc. Natl. Acad. Sci. U S A 2010; 107: 559
- 9a DeRider ML. Wilkens SJ. Waddell MJ. Bretscher LE. Weinhold F. Raines RT. Markley JL. J. Am. Chem. Soc. 2002; 124: 2497
- 9b Renner C. Alefelder S. Bae JH. Budisa N. Huber R. Moroder L. Angew. Chem. Int. Ed. 2001; 40: 923
- 9c Sonntag LS. Schweizer S. Ochsenfeld C. Wennemers H. J. Am. Chem. Soc. 2006; 128: 14697
- 10a Kuemin M. Nagel YA. Schweizer S. Monnard FW. Ochsenfeld C. Wennemers H. Angew. Chem. Int. Ed. 2010; 49: 6324
- 10b Erdmann RS. Wennemers H. Angew. Chem. Int. Ed. 2011; 50: 6835
- 10c Erdmann RS. Wennemers H. J. Am. Chem. Soc. 2012; 134: 17117
- 11 Pandey AK. Naduthambi D. Thomas KM. Zondlo NJ. J. Am. Chem. Soc. 2013; 135: 4333
- 12 Cadamuro SA. Reichold R. Kusebauch U. Musiol H.-J. Renner C. Tavam P. Moroder L. Angew. Chem. Int. Ed. 2008; 47: 2143
- 13 Siebler C. Maryasin B. Kuemin M. Erdmann RS. Rigling C. Grünenfelder C. Ochsenfeld C. Wennemers H. Chem. Sci. 2015; 6: 6725
- 14a Hinderaker MP. Raines RT. Protein Sci. 2003; 12: 1188
- 14b Newberry RW. Raines RT. Acc. Chem. Res. 2017; 50: 1838
- 15a Holmgren SK. Taylor KM. Bretscher LE. Raines RT. Nature 1998; 392: 666
- 15b Shoulders MD. Raines RT. Annu. Rev. Biochem. 2009; 78: 929
- 16a Newberry RW. Raines RT. Top. Heterocycl. Chem. 2017; 48: 1
- 16b Bretscher LE. Jenkins CL. Taylor KM. DeRider ML. Raines RT. J. Am. Chem. Soc. 2001; 123: 777
- 16c Lummis SC. Beene DL. Lee LW. Lester HA. Broadhurst RW. Dougherty DA. Nature 2005; 438: 248
- 16d Holzberger B. Marx A. J. Am. Chem. Soc. 2010; 132: 15708
- 16e Gopi HN. Tirupula KC. Baxter S. Ajith S. Chaiken IM. ChemMedChem 2006; 1: 54
- 16f Steiner T. Hess P. Bae JH. Wiltschi B. Moroder L. Budisa N. PLoS One 2008; 3: e1680
- 16g Lieblich SA. Fang KY. Cahn JK. B. Rawson J. LeBon J. Ku HT. Tirrell DA. J. Am. Chem. Soc. 2017; 139: 8384
- 17a Kümin M. Sonntag L.-S. Wennemers H. J. Am. Chem. Soc. 2007; 129: 466
- 17b Siebler C. Erdmann RS. Wennemers H. Angew. Chem. Int. Ed. 2014; 53: 10340
- 17c Egli J. Siebler C. Marayasin B. Erdmann RS. Bergande C. Ochsenfeld C. Wennemers H. Chem. Eur. J. 2017; 33: 7938
- 17d Hentzen NB. Smeenk LE. J. Witek J. Riniker S. Wennemers H. J. Am. Chem. Soc. 2017; 139: 12815
- 18 Grünenfelder CE. Kisunzu JK. Trapp N. Kastl R. Wennemers H. Pept. Sci. 2017; 108: e22912
- 19 For another example where H-bonding outcompeted the n→π* interaction, see: Newberry RW. Orke SJ. Raines RT. Org. Lett. 2016; 18: 3614
For reviews, see:
For examples, see:
For a review see:
For an excellent review, see:
For a recent review, see:
For examples see: