Semin Reprod Med 2017; 35(06): 494-498
DOI: 10.1055/s-0037-1607240
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Uterine Fibroids: Bridging Genomic Defects and Chronic Inflammation

Abdeljabar El Andaloussi
1   Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia
,
Zuni Chaudhry
3   Saint James School of Medicine, St. Vincent, Caribbean
,
Ayman Al-Hendy
1   Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia
,
Nahed Ismail
2   Department of Pathology, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
› Author Affiliations
Further Information

Publication History

Publication Date:
03 November 2017 (online)

Abstract

Uterine fibroids (UF; aka leiomyoma, myomas) are the most common benign tumors of female reproductive tract. They are highly prevalent, with 70 to 80% of women burdened by the end of their reproductive years. Fibroids are a leading cause of pelvic pain, abnormal vaginal bleeding, pelvic bulk symptoms, miscarriage, and infertility. They are the leading indication for hysterectomy, and costs exceed 34 billion dollars annually in the United States alone. Recently, somatic mutations in exons 1 and 2 of Med12 gene emerged as common UF driver mutations. Unfortunately, the detailed etiology of UF is not fully realized. Particularly, very little is known about possible dysregulation of inflammatory and immune processes and their possible contribution to UF pathogenesis. The notion on possible impact of altered estrogen and progesterone signaling in UF on inflammatory responses and DNA repair machinery that can conceivably lead to tumor-specific somatic mutation is indeed an intriguing concept which has some foundation in available observation in other hormonally responsive tissues. This review highlights and summarizes our current knowledge on the convergence of such pathways and their relevance for UF pathogenesis.

 
  • References

  • 1 Wilkens J, Chwalisz K, Han C. , et al. Effects of the selective progesterone receptor modulator asoprisnil on uterine artery blood flow, ovarian activity, and clinical symptoms in patients with uterine leiomyomata scheduled for hysterectomy. J Clin Endocrinol Metab 2008; 93 (12) 4664-4671
  • 2 Kim JJ, Sefton EC. The role of progesterone signaling in the pathogenesis of uterine leiomyoma. Mol Cell Endocrinol 2012; 358 (02) 223-231
  • 3 Bulun SE. Uterine fibroids. N Engl J Med 2013; 369 (14) 1344-1355
  • 4 Kozma N, Halasz M, Polgar B. , et al. Progesterone-induced blocking factor activates STAT6 via binding to a novel IL-4 receptor. J Immunol 2006; 176 (02) 819-826
  • 5 Hughes GC. Progesterone and autoimmune disease. Autoimmun Rev 2012; 11 (6-7): A502-A514
  • 6 Miyaura H, Iwata M. Direct and indirect inhibition of Th1 development by progesterone and glucocorticoids. J Immunol 2002; 168 (03) 1087-1094
  • 7 Kawaguchi K, Fujii S, Konishi I, Nanbu Y, Nonogaki H, Mori T. Mitotic activity in uterine leiomyomas during the menstrual cycle. Am J Obstet Gynecol 1989; 160 (03) 637-641
  • 8 Kawaguchi K, Fujii S, Konishi I. , et al. Immunohistochemical analysis of oestrogen receptors, progesterone receptors and Ki-67 in leiomyoma and myometrium during the menstrual cycle and pregnancy. Virchows Arch A Pathol Anat Histopathol 1991; 419 (04) 309-315
  • 9 Tan H, Yi L, Rote NS, Hurd WW, Mesiano S. Progesterone receptor-A and -B have opposite effects on proinflammatory gene expression in human myometrial cells: implications for progesterone actions in human pregnancy and parturition. J Clin Endocrinol Metab 2012; 97 (05) E719-E730
  • 10 Palomba S, Sena T, Noia R, Di Carlo C, Zullo F, Mastrantonio P. Transdermal hormone replacement therapy in postmenopausal women with uterine leiomyomas. Obstet Gynecol 2001; 98 (06) 1053-1058
  • 11 Ito A, Imada K, Sato T, Kubo T, Matsushima K, Mori Y. Suppression of interleukin 8 production by progesterone in rabbit uterine cervix. Biochem J 1994; 301 (Pt 1): 183-186
  • 12 Yellon SM, Ebner CA, Elovitz MA. Medroxyprogesterone acetate modulates remodeling, immune cell census, and nerve fibers in the cervix of a mouse model for inflammation-induced preterm birth. Reprod Sci 2009; 16 (03) 257-264
  • 13 Kyurkchiev D, Ivanova-Todorova E, Kyurkchiev SD. New target cells of the immunomodulatory effects of progesterone. Reprod Biomed Online 2010; 21 (03) 304-311
  • 14 Tabiasco J, Rabot M, Aguerre-Girr M. , et al. Human decidual NK cells: unique phenotype and functional properties -- a review. Placenta 2006; 27 (Suppl A): S34-S39
  • 15 Henderson TA, Saunders PT, Moffett-King A, Groome NP, Critchley HO. Steroid receptor expression in uterine natural killer cells. J Clin Endocrinol Metab 2003; 88 (01) 440-449
  • 16 Barber EM, Pollard JW. The uterine NK cell population requires IL-15 but these cells are not required for pregnancy nor the resolution of a Listeria monocytogenes infection. J Immunol 2003; 171 (01) 37-46
  • 17 Okada H, Nakajima T, Sanezumi M, Ikuta A, Yasuda K, Kanzaki H. Progesterone enhances interleukin-15 production in human endometrial stromal cells in vitro. J Clin Endocrinol Metab 2000; 85 (12) 4765-4770
  • 18 Verma S, Hiby SE, Loke YW, King A. Human decidual natural killer cells express the receptor for and respond to the cytokine interleukin 15. Biol Reprod 2000; 62 (04) 959-968
  • 19 Brakta S, Diamond JS, Al-Hendy A, Diamond MP, Halder SK. Role of vitamin D in uterine fibroid biology. Fertil Steril 2015; 104 (03) 698-706
  • 20 Mittal P, Shin YH, Yatsenko SA, Castro CA, Surti U, Rajkovic A. Med12 gain-of-function mutation causes leiomyomas and genomic instability. J Clin Invest 2015; 125 (08) 3280-3284
  • 21 Yang Q, Diamond MP, Al-Hendy A. Early life adverse environmental exposures increase the risk of uterine fibroid development: role of epigenetic regulation. Front Pharmacol 2016; 7: 40
  • 22 Tagashira Y, Taniguchi F, Harada T, Ikeda A, Watanabe A, Terakawa N. Interleukin-10 attenuates TNF-alpha-induced interleukin-6 production in endometriotic stromal cells. Fertil Steril 2009; 91 (05, Suppl): 2185-2192
  • 23 Nair S, Al-Hendy A. Adipocytes enhance the proliferation of human leiomyoma cells via TNF-α proinflammatory cytokine. Reprod Sci 2011; 18 (12) 1186-1192
  • 24 Hunt JS, Miller L, Roby KF, Huang J, Platt JS, DeBrot BL. Female steroid hormones regulate production of pro-inflammatory molecules in uterine leukocytes. J Reprod Immunol 1997; 35 (02) 87-99
  • 25 Plewka A, Madej P, Plewka D. , et al. Immunohistochemical localization of selected pro-inflammatory factors in uterine myomas and myometrium in women of various ages. Folia Histochem Cytobiol 2013; 51 (01) 73-83
  • 26 Straub RH. The complex role of estrogens in inflammation. Endocr Rev 2007; 28 (05) 521-574
  • 27 Sternberg EM. Neuroendocrine regulation of autoimmune/inflammatory disease. J Endocrinol 2001; 169 (03) 429-435
  • 28 Heldring N, Pike A, Andersson S. , et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev 2007; 87 (03) 905-931
  • 29 Glatstein IZ, Yeh J. Ontogeny of the estrogen receptor in the human fetal uterus. J Clin Endocrinol Metab 1995; 80 (03) 958-964
  • 30 Murphy AJ, Guyre PM, Pioli PA. Estradiol suppresses NF-kappa B activation through coordinated regulation of let-7a and miR-125b in primary human macrophages. J Immunol 2010; 184 (09) 5029-5037
  • 31 Stice JP, Mbai FN, Chen L, Knowlton AA. Rapid activation of nuclear factor κB by 17β-estradiol and selective estrogen receptor modulators: pathways mediating cellular protection. Shock 2012; 38 (02) 128-136
  • 32 Xing D, Oparil S, Yu H. , et al. Estrogen modulates NFκB signaling by enhancing IκBα levels and blocking p65 binding at the promoters of inflammatory genes via estrogen receptor-β. PLoS One 2012; 7 (06) e36890
  • 33 Dodel RC, Du Y, Bales KR, Gao F, Paul SM. Sodium salicylate and 17beta-estradiol attenuate nuclear transcription factor NF-kappaB translocation in cultured rat astroglial cultures following exposure to amyloid A beta(1-40) and lipopolysaccharides. J Neurochem 1999; 73 (04) 1453-1460
  • 34 Wen Y, Yang S, Liu R. , et al. Estrogen attenuates nuclear factor-kappa B activation induced by transient cerebral ischemia. Brain Res 2004; 1008 (02) 147-154
  • 35 Solar P, Velasquez L. Consequences of nongenomic actions of estradiol on pathogenic genital tract response. J Mol Signal 2013; 8 (01) 1
  • 36 Liu CJ, Lo JF, Kuo CH. , et al. Akt mediates 17beta-estradiol and/or estrogen receptor-alpha inhibition of LPS-induced tumor necrosis factor-alpha expression and myocardial cell apoptosis by suppressing the JNK1/2-NFkappaB pathway. J Cell Mol Med 2009; 13 (9B): 3655-3667
  • 37 Maia Jr H, Pimentel K, Casoy J. , et al. Aromatase expression in the eutopic endometrium of myomatous uteri: the influence of the menstrual cycle and oral contraceptive use. Gynecol Endocrinol 2007; 23 (06) 320-324
  • 38 Poligone B, Baldwin AS. Positive and negative regulation of NF-kappaB by COX-2: roles of different prostaglandins. J Biol Chem 2001; 276 (42) 38658-38664
  • 39 Danforth Jr DN, Sgagias MK. Tumour necrosis factor-alpha modulates oestradiol responsiveness of MCF-7 breast cancer cells in vitro. J Endocrinol 1993; 138 (03) 517-528
  • 40 Lin L, DeMartino GN, Greene WC. Cotranslational biogenesis of NF-kappaB p50 by the 26S proteasome. Cell 1998; 92 (06) 819-828
  • 41 Roberts AB, Flanders KC, Heine UI. , et al. Transforming growth factor-beta: multifunctional regulator of differentiation and development. Philos Trans R Soc Lond B Biol Sci 1990; 327 (1239): 145-154
  • 42 Klimp AH, Hollema H, Kempinga C, van der Zee AG, de Vries EG, Daemen T. Expression of cyclooxygenase-2 and inducible nitric oxide synthase in human ovarian tumors and tumor-associated macrophages. Cancer Res 2001; 61 (19) 7305-7309
  • 43 Ozel E, Peştereli HE, Simşek T, Erdoğan G, Karaveli FS. Expression of cyclooxygenase-2 and inducible nitric oxide synthase in ovarian surface epithelial carcinomas: is there any correlation with angiogenesis or clinicopathologic parameters?. Int J Gynecol Cancer 2006; 16 (02) 549-555
  • 44 Ali-Fehmi R, Semaan A, Sethi S. , et al. Molecular typing of epithelial ovarian carcinomas using inflammatory markers. Cancer 2011; 117 (02) 301-309
  • 45 Rogers R, Norian J, Malik M. , et al. Mechanical homeostasis is altered in uterine leiomyoma. Am J Obstet Gynecol 2008; 198 (04) 474.e1-474.e11
  • 46 Manta L, Suciu N, Toader O, Purcărea RM, Constantin A, Popa F. The etiopathogenesis of uterine fibromatosis. J Med Life 2016; 9 (01) 39-45
  • 47 Ciarmela P, Islam MS, Reis FM. , et al. Growth factors and myometrium: biological effects in uterine fibroid and possible clinical implications. Hum Reprod Update 2011; 17 (06) 772-790
  • 48 Scheibl P, Zerbe H. Effect of progesterone on the immune system in consideration of bovine placental retention [in German]. Dtsch Tierarztl Wochenschr 2000; 107 (06) 221-227
  • 49 Giannoni E, Guignard L, Knaup Reymond M. , et al. Estradiol and progesterone strongly inhibit the innate immune response of mononuclear cells in newborns. Infect Immun 2011; 79 (07) 2690-2698
  • 50 Hardy DB, Janowski BA, Corey DR, Mendelson CR. Progesterone receptor plays a major antiinflammatory role in human myometrial cells by antagonism of nuclear factor-kappaB activation of cyclooxygenase 2 expression. Mol Endocrinol 2006; 20 (11) 2724-2733
  • 51 Edwards J, Lorenz KT, Remington BA. , et al. Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state. Phys Rev Lett 2004; 92 (07) 075002
  • 52 Hoekstra AV, Sefton EC, Berry E. , et al. Progestins activate the AKT pathway in leiomyoma cells and promote survival. J Clin Endocrinol Metab 2009; 94 (05) 1768-1774
  • 53 Kovács KA, Lengyel F, Környei JL. , et al. Differential expression of Akt/protein kinase B, Bcl-2 and Bax proteins in human leiomyoma and myometrium. J Steroid Biochem Mol Biol 2003; 87 (4-5): 233-240
  • 54 Yang Q, Laknaur A, Elam L. , et al. Identification of Polycomb group protein EZH2-mediated DNA mismatch repair gene MSH2 in human uterine fibroids. Reprod Sci 2016; 23 (10) 1314-1325
  • 55 Yang Q, Nair S, Laknaur A, Ismail N, Diamond MP, Al-Hendy A. The Polycomb group protein EZH2 impairs DNA damage repair gene expression in human uterine fibroids. Biol Reprod 2016; 94 (03) 69
  • 56 Bertsch E, Qiang W, Zhang Q. , et al. MED12 and HMGA2 mutations: two independent genetic events in uterine leiomyoma and leiomyosarcoma. Mod Pathol 2014; 27 (08) 1144-1153
  • 57 Mäkinen N, Vahteristo P, Kämpjärvi K, Arola J, Bützow R, Aaltonen LA. MED12 exon 2 mutations in histopathological uterine leiomyoma variants. Eur J Hum Genet 2013; 21 (11) 1300-1303
  • 58 Tsutsui T, Fukasawa R, Shinmyouzu K. , et al. Mediator complex recruits epigenetic regulators via its two cyclin-dependent kinase subunits to repress transcription of immune response genes. J Biol Chem 2013; 288 (29) 20955-20965
  • 59 Natsuka S, Akira S, Nishio Y. , et al. Macrophage differentiation-specific expression of NF-IL6, a transcription factor for interleukin-6. Blood 1992; 79 (02) 460-466
  • 60 Yamamoto S, Hagihara T, Horiuchi Y. , et al. Mediator cyclin-dependent kinases upregulate transcription of inflammatory genes in cooperation with NF-κB and C/EBPβ on stimulation of Toll-like receptor 9. Genes Cells 2017; 22 (03) 265-276
  • 61 El Andaloussi A, Sonabend AM, Han Y, Lesniak MS. Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia 2006; 54 (06) 526-535