Semin Respir Crit Care Med 2017; 38(03): 287-300
DOI: 10.1055/s-0037-1603112
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

How Should We Treat Hospital-Acquired and Ventilator-Associated Pneumonia Caused by Extended-Spectrum β-Lactamase–Producing Enterobacteriaceae?

Jean-François Timsit
1   Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat University Hospital, Paris, France
2   IAME, Inserm U1137 Université Paris Diderot, Paris, France
,
Benoit Pilmis
3   Unit of Clinical Microbiology, Groupe Hospitalier Paris Saint-Joseph, Paris, France
,
Jean-Ralph Zahar
2   IAME, Inserm U1137 Université Paris Diderot, Paris, France
4   Clinical Microbiology, Infection Control and Infection Risk Prevention Department, Groupe Hospitalier Paris Seine Saint-Denis, Bobigny, France
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
04. Juni 2017 (online)

Abstract

Hospital-acquired and ventilator-associated pneumonia (HAP/VAP) due to extended-spectrum β-lactamase–producing Enterobacteriaceae (ESBL-PE) represent a growing problem. Indeed, ESBL-PE is endemic in many countries, and 5 to 25% of intensive care unit (ICU) patients are ESBL-PE carrier on ICU admission. ESBL-PE HAP/VAP is associated with a higher mortality than HAP/VAP due to susceptible Enterobacteriaceae because the resistance profile decreases the adequacy rate of empiric therapy. ESBL-PE should be considered in the empirical treatment in case of the high burden of ESBL-PE in the unit, in the case of previous ESBL-PE colonization, when the HAP/VAP occurs late, and in patients with shock. A negative active systematic surveillance culture on rectal swab reduced the risk of ESBL-PE VAP to less than 1%. Rapid diagnostic tests are now able to confirm the presence of ESBL-PE in VAP within 24 hours; new molecular methods will provide results within few hours.Adequate treatment usually required carbapenems. The alternative β-lactams such as β-lactams/β-lactamases inhibitor combinations could be proposed as a step-down therapy according to the antibiotic susceptibility result. Optimization of pharmacokinetics requires high dosage and continuous or prolonged infusions for β-lactams. When the patient is stabilized, a therapy of duration 7 to 8 days is recommended.

 
  • References

  • 1 Melsen WG, Rovers MM, Groenwold RH. , et al. Attributable mortality of ventilator-associated pneumonia: a meta-analysis of individual patient data from randomised prevention studies. Lancet Infect Dis 2013; 13 (08) 665-671
  • 2 Bekaert M, Timsit JF, Vansteelandt S. , et al; Outcomerea Study Group. Attributable mortality of ventilator-associated pneumonia: a reappraisal using causal analysis. Am J Respir Crit Care Med 2011; 184 (10) 1133-1139
  • 3 Nguile-Makao M, Zahar JR, Français A. , et al. Attributable mortality of ventilator-associated pneumonia: respective impact of main characteristics at ICU admission and VAP onset using conditional logistic regression and multi-state models. Intensive Care Med 2010; 36 (05) 781-789
  • 4 Timsit JF, Zahar JR, Chevret S. Attributable mortality of ventilator-associated pneumonia. Curr Opin Crit Care 2011; 17 (05) 464-471
  • 5 Van Bambeke F, Michot JM, Van Eldere J, Tulkens PM. Quinolones in 2005: an update. Clin Microbiol Infect 2005; 11 (04) 256-280
  • 6 Iregui M, Ward S, Sherman G, Fraser VJ, Kollef MH. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest 2002; 122 (01) 262-268
  • 7 Kuti EL, Patel AA, Coleman CI. Impact of inappropriate antibiotic therapy on mortality in patients with ventilator-associated pneumonia and blood stream infection: a meta-analysis. J Crit Care 2008; 23 (01) 91-100
  • 8 Adrie C, Garrouste-Orgeas M, Ibn Essaied W. , et al; OUTCOMEREA Study Group*. Attributable mortality of ICU-acquired bloodstream infections: Impact of the source, causative micro-organism, resistance profile and antimicrobial therapy. J Infect 2017; 74 (02) 131-141
  • 9 Vincent JL, Rello J, Marshall J. , et al; EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009; 302 (21) 2323-2329
  • 10 Kalil AC, Metersky ML, Klompas M. , et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2016; 63 (05) e61-e111
  • 11 Society AT. ; American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 2005; 171 (04) 388-416
  • 12 Cantón R, Novais A, Valverde A. , et al. Prevalence and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae in Europe. Clin Microbiol Infect 2008; 14 (Suppl. 01) 144-153
  • 13 Rodríguez-Baño J, Picón E, Gijón P. , et al; Spanish Network for Research in Infectious Diseases (REIPI). Community-onset bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli: risk factors and prognosis. Clin Infect Dis 2010; 50 (01) 40-48
  • 14 Lambert ML, Suetens C, Savey A. , et al. Clinical outcomes of health-care-associated infections and antimicrobial resistance in patients admitted to European intensive-care units: a cohort study. Lancet Infect Dis 2011; 11 (01) 30-38
  • 15 Zahar JR, Timsit JF, Garrouste-Orgeas M. , et al. Outcomes in severe sepsis and patients with septic shock: pathogen species and infection sites are not associated with mortality. Crit Care Med 2011; 39 (08) 1886-1895
  • 16 Arpin C, Quentin C, Grobost F. , et al; Scientific Committee of ONERBA. Nationwide survey of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the French community setting. J Antimicrob Chemother 2009; 63 (06) 1205-1214
  • 17 Meier S, Weber R, Zbinden R, Ruef C, Hasse B. Extended-spectrum β-lactamase-producing Gram-negative pathogens in community-acquired urinary tract infections: an increasing challenge for antimicrobial therapy. Infection 2011; 39 (04) 333-340
  • 18 Forel JM, Voillet F, Pulina D. , et al. Ventilator-associated pneumonia and ICU mortality in severe ARDS patients ventilated according to a lung-protective strategy. Crit Care 2012; 16 (02) R65
  • 19 Rello J, Ulldemolins M, Lisboa T. , et al; EU-VAP/CAP Study Group. Determinants of prescription and choice of empirical therapy for hospital-acquired and ventilator-associated pneumonia. Eur Respir J 2011; 37 (06) 1332-1339
  • 20 Kollef MH, Chastre J, Fagon JY. , et al. Global prospective epidemiologic and surveillance study of ventilator-associated pneumonia due to Pseudomonas aeruginosa. Crit Care Med 2014; 42 (10) 2178-2187
  • 21 Chung DR, Song JH, Kim SH. , et al; Asian Network for Surveillance of Resistant Pathogens Study Group. High prevalence of multidrug-resistant nonfermenters in hospital-acquired pneumonia in Asia. Am J Respir Crit Care Med 2011; 184 (12) 1409-1417
  • 22 Rosenthal VD, Maki DG, Mehta Y. , et al; International Nosocomial Infection Control Consortium. International Nosocomial Infection Control Consortium (INICC) report, data summary of 43 countries for 2007-2012. Device-associated module. Am J Infect Control 2014; 42 (09) 942-956
  • 23 Sader HS, Farrell DJ, Flamm RK, Jones RN. Antimicrobial susceptibility of Gram-negative organisms isolated from patients hospitalised with pneumonia in US and European hospitals: results from the SENTRY Antimicrobial Surveillance Program, 2009-2012. Int J Antimicrob Agents 2014; 43 (04) 328-334
  • 24 Restrepo MI, Peterson J, Fernandez JF, Qin Z, Fisher AC, Nicholson SC. Comparison of the bacterial etiology of early-onset and late-onset ventilator-associated pneumonia in subjects enrolled in 2 large clinical studies. Respir Care 2013; 58 (07) 1220-1225
  • 25 Martin-Loeches I, Deja M, Koulenti D. , et al; EU-VAP Study Investigators. Potentially resistant microorganisms in intubated patients with hospital-acquired pneumonia: the interaction of ecology, shock and risk factors. Intensive Care Med 2013; 39 (04) 672-681
  • 26 Razazi K, Derde LP, Verachten M, Legrand P, Lesprit P, Brun-Buisson C. Clinical impact and risk factors for colonization with extended-spectrum β-lactamase-producing bacteria in the intensive care unit. Intensive Care Med 2012; 38 (11) 1769-1778
  • 27 Carbonne H, Le Dorze M, Bourrel AS. , et al. Relation between presence of extended-spectrum β-lactamase-producing Enterobacteriaceae in systematic rectal swabs and respiratory tract specimens in ICU patients. Ann Intensive Care 2017; 7 (01) 13
  • 28 Harris AD, McGregor JC, Johnson JA. , et al. Risk factors for colonization with extended-spectrum beta-lactamase-producing bacteria and intensive care unit admission. Emerg Infect Dis 2007; 13 (08) 1144-1149
  • 29 Azim A, Dwivedi M, Rao PB. , et al. Epidemiology of bacterial colonization at intensive care unit admission with emphasis on extended-spectrum beta-lactamase- and metallo-beta-lactamase-producing Gram-negative bacteria--an Indian experience. J Med Microbiol 2010; 59 (Pt 8): 955-960
  • 30 LeFrock JL, Ellis CA, Weinstein L. The relation between aerobic fecal and oropharyngeal microflora in hospitalized patients. Am J Med Sci 1979; 277 (03) 275-280
  • 31 Ulstad CR, Solheim M, Berg S, Lindbæk M, Dahle UR, Wester AL. Carriage of ESBL/AmpC-producing or ciprofloxacin non-susceptible Escherichia coli and Klebsiella spp. in healthy people in Norway. Antimicrob Resist Infect Control 2016; 5: 57
  • 32 Woerther PL, Burdet C, Chachaty E, Andremont A. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: toward the globalization of CTX-M. Clin Microbiol Rev 2013; 26 (04) 744-758
  • 33 Tängdén T, Cars O, Melhus A, Löwdin E. Foreign travel is a major risk factor for colonization with Escherichia coli producing CTX-M-type extended-spectrum beta-lactamases: a prospective study with Swedish volunteers. Antimicrob Agents Chemother 2010; 54 (09) 3564-3568
  • 34 Kola A, Kohler C, Pfeifer Y. , et al. High prevalence of extended-spectrum-β-lactamase-producing Enterobacteriaceae in organic and conventional retail chicken meat, Germany. J Antimicrob Chemother 2012; 67 (11) 2631-2634
  • 35 Woerther PL, Angebault C, Jacquier H. , et al. Characterization of fecal extended-spectrum-β-lactamase-producing Escherichia coli in a remote community during a long time period. Antimicrob Agents Chemother 2013; 57 (10) 5060-5066
  • 36 Han JH, Nachamkin I, Zaoutis TE. , et al. Risk factors for gastrointestinal tract colonization with extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella species in hospitalized patients. Infect Control Hosp Epidemiol 2012; 33 (12) 1242-1245
  • 37 Bert F, Larroque B, Dondero F. , et al. Risk factors associated with preoperative fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae in liver transplant recipients. Transpl Infect Dis 2014; 16 (01) 84-89
  • 38 Zahar JR, Lesprit P, Ruckly S. , et al; BacterCom Study Group. Predominance of healthcare-associated cases among episodes of community-onset bacteraemia due to extended-spectrum β-lactamase-producing Enterobacteriaceae. Int J Antimicrob Agents 2017; 49 (01) 67-73
  • 39 Goulenok T, Ferroni A, Bille E. , et al. Risk factors for developing ESBL E. coli: can clinicians predict infection in patients with prior colonization?. J Hosp Infect 2013; 84 (04) 294-299
  • 40 Goodman KE, Lessler J, Cosgrove SE. , et al; Antibacterial Resistance Leadership Group. A clinical decision tree to predict whether a bacteremic patient is infected with an extended-spectrum β-lactamase-producing organism. Clin Infect Dis 2016; 63 (07) 896-903
  • 41 Augustine MR, Testerman TL, Justo JA. , et al. Clinical risk score for prediction of extended-spectrum β-lactamase-producing Enterobacteriaceae in bloodstream isolates. Infect Control Hosp Epidemiol 2017; 38 (03) 266-272
  • 42 Barbier F, Pommier C, Essaied W. , et al; OUTCOMEREA Study Group. Colonization and infection with extended-spectrum β-lactamase-producing Enterobacteriaceae in ICU patients: what impact on outcomes and carbapenem exposure?. J Antimicrob Chemother 2016; 71 (04) 1088-1097
  • 43 Vodovar D, Mégarbane B. Extended-spectrum beta-lactamase producing Enterobacteriaceae in the intensive care unit: persistent issues to understand the transition from colonization to infection. Infection 2014; 42 (05) 943-944
  • 44 Bruyère R, Vigneron C, Bador J. , et al. Significance of prior digestive colonization with extended-spectrum β-lactamase-producing Enterobacteriaceae in patients with ventilator-associated pneumonia. Crit Care Med 2016; 44 (04) 699-706
  • 45 Decousser JW, Poirel L, Nordmann P. Recent advances in biochemical and molecular diagnostics for the rapid detection of antibiotic-resistant Enterobacteriaceae: a focus on ß-lactam resistance. Expert Rev Mol Diagn 2017; 17 (04) 327-350
  • 46 Jamal W, Al Roomi E, AbdulAziz LR, Rotimi VO. Evaluation of Curetis Unyvero, a multiplex PCR-based testing system, for rapid detection of bacteria and antibiotic resistance and impact of the assay on management of severe nosocomial pneumonia. J Clin Microbiol 2014; 52 (07) 2487-2492
  • 47 Douglas IS, Price CS, Overdier KH. , et al. Rapid automated microscopy for microbiological surveillance of ventilator-associated pneumonia. Am J Respir Crit Care Med 2015; 191 (05) 566-573
  • 48 Le Dorze M, Gault N, Foucrier A. , et al. Performance and impact of a rapid method combining mass spectrometry and direct antimicrobial susceptibility testing on treatment adequacy of patients with ventilator-associated pneumonia. Clin Microbiol Infect 2015; 21 (05) 468.e1-468.e6
  • 49 Poirel L, Fernández J, Nordmann P. Comparison of three biochemical tests for rapid detection of extended-spectrum-β-lactamase-producing Enterobacteriaceae. J Clin Microbiol 2016; 54 (02) 423-427
  • 50 Pilmis B, Delory T, Groh M. , et al. Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-PE) infections: are carbapenem alternatives achievable in daily practice?. Int J Infect Dis 2015; 39: 62-67
  • 51 Armand-Lefèvre L, Angebault C, Barbier F. , et al. Emergence of imipenem-resistant gram-negative bacilli in intestinal flora of intensive care patients. Antimicrob Agents Chemother 2013; 57 (03) 1488-1495
  • 52 Timsit JF, Harbarth S, Carlet J. De-escalation as a potential way of reducing antibiotic use and antimicrobial resistance in ICU. Intensive Care Med 2014; 40 (10) 1580-1582
  • 53 Bretonnière C, Leone M, Milési C. , et al; Société de Réanimation de Langue Française (SRLF); Société Française d'Anesthésie et de Réanimation (SFAR). Strategies to reduce curative antibiotic therapy in intensive care units (adult and paediatric). Intensive Care Med 2015; 41 (07) 1181-1196
  • 54 Gutiérrez-Gutiérrez B, Bonomo RA, Carmeli Y. , et al; REIPI/ESGBIS/INCREMENT Group. Ertapenem for the treatment of bloodstream infections due to ESBL-producing Enterobacteriaceae: a multinational pre-registered cohort study. J Antimicrob Chemother 2016; 71 (06) 1672-1680
  • 55 Lee NY, Lee CC, Huang WH, Tsui KC, Hsueh PR, Ko WC. Carbapenem therapy for bacteremia due to extended-spectrum-β-lactamase-producing Escherichia coli or Klebsiella pneumoniae: implications of ertapenem susceptibility. Antimicrob Agents Chemother 2012; 56 (06) 2888-2893
  • 56 Jean SS, Coombs G, Ling T. , et al. Epidemiology and antimicrobial susceptibility profiles of pathogens causing urinary tract infections in the Asia-Pacific region: Results from the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2010-2013. Int J Antimicrob Agents 2016; 47 (04) 328-334
  • 57 Harris PN, Tambyah PA, Paterson DL. β-lactam and β-lactamase inhibitor combinations in the treatment of extended-spectrum β-lactamase producing Enterobacteriaceae: time for a reappraisal in the era of few antibiotic options?. Lancet Infect Dis 2015; 15 (04) 475-485
  • 58 Rodríguez-Baño J, Navarro MD, Retamar P, Picón E, Pascual Á. ; Extended-Spectrum Beta-Lactamases–Red Española de Investigación en Patología Infecciosa/Grupo de Estudio de Infección Hospitalaria Group. β-Lactam/β-lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli: a post hoc analysis of prospective cohorts. Clin Infect Dis 2012; 54 (02) 167-174
  • 59 Ng TM, Khong WX, Harris PN. , et al. Empiric piperacillin-tazobactam versus carbapenems in the treatment of bacteraemia due to extended-spectrum beta-lactamase-producing Enterobacteriaceae. PLoS One 2016; 11 (04) e0153696
  • 60 Boucher A, Meybeck A, Patoz P. , et al. Alternatives to carbapenems in ventilator-associated pneumonia due to ESBL-producing Enterobacteriaceae. J Infect 2016; 73 (03) 293-296
  • 61 Ofer-Friedman H, Shefler C, Sharma S. , et al. Carbapenems versus piperacillin-tazobactam for bloodstream infections of nonurinary source caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. Infect Control Hosp Epidemiol 2015; 36 (08) 981-985
  • 62 Vardakas KZ, Tansarli GS, Rafailidis PI, Falagas ME. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: a systematic review and meta-analysis. J Antimicrob Chemother 2012; 67 (12) 2793-2803
  • 63 Retamar P, López-Cerero L, Muniain MA, Pascual Á, Rodríguez-Baño J. ; ESBL-REIPI/GEIH Group. Impact of the MIC of piperacillin-tazobactam on the outcome of patients with bacteremia due to extended-spectrum-β-lactamase-producing Escherichia coli. Antimicrob Agents Chemother 2013; 57 (07) 3402-3404
  • 64 Guet-Revillet H, Tomini E, Emirian A. , et al. Piperacillin/tazobactam as an alternative antibiotic therapy to carbapenems in the treatment of urinary tract infections due to extended-spectrum β-lactamase-producing Enterobacteriaceae: an in silico pharmacokinetic study. Int J Antimicrob Agents 2017; 49 (01) 62-66
  • 65 Zhanel GG, Chung P, Adam H. , et al. Ceftolozane/tazobactam: a novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs 2014; 74 (01) 31-51
  • 66 Pfaller MA, Bassetti M, Duncan LR, Castanheira M. Ceftolozane/tazobactam activity against drug-resistant Enterobacteriaceae and Pseudomonas aeruginosa causing urinary tract and intraabdominal infections in Europe: report from an antimicrobial surveillance programme (2012-15). J Antimicrob Chemother 2017
  • 67 Popejoy MW, Paterson DL, Cloutier D. , et al. Efficacy of ceftolozane/tazobactam against urinary tract and intra-abdominal infections caused by ESBL-producing Escherichia coli and Klebsiella pneumoniae: a pooled analysis of Phase 3 clinical trials. J Antimicrob Chemother 2017; 72 (01) 268-272
  • 68 Livermore DM, Mushtaq S, Warner M. , et al. Activities of NXL104 combinations with ceftazidime and aztreonam against carbapenemase-Producing Enterobacteriaceae. Antimicrob Agents Chemother 2011; 55 (01) 390-394
  • 69 Sader HS, Castanheira M, Flamm RK, Mendes RE, Farrell DJ, Jones RN. Ceftazidime/avibactam tested against Gram-negative bacteria from intensive care unit (ICU) and non-ICU patients, including those with ventilator-associated pneumonia. Int J Antimicrob Agents 2015; 46 (01) 53-59
  • 70 Shields RK, Potoski BA, Haidar G. , et al. Clinical outcomes, drug toxicity, and emergence of ceftazidime-avibactam resistance among patients treated for carbapenem-resistant Enterobacteriaceae infections. Clin Infect Dis 2016; 63 (12) 1615-1618
  • 71 Aitken SL, Tarrand JJ, Deshpande LM. , et al. High rates of nonsusceptibility to ceftazidime-avibactam and identification of New Delhi metallo-β-lactamase production in Enterobacteriaceae bloodstream infections at a major cancer center. Clin Infect Dis 2016; 63 (07) 954-958
  • 72 Laterre PF, Wittebole X, Van de Velde S. , et al. Temocillin (6 g daily) in critically ill patients: continuous infusion versus three times daily administration. J Antimicrob Chemother 2015; 70 (03) 891-898
  • 73 Balakrishnan I, Awad-El-Kariem FM, Aali A. , et al. Temocillin use in England: clinical and microbiological efficacies in infections caused by extended-spectrum and/or derepressed AmpC β-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 2011; 66 (11) 2628-2631
  • 74 Nguyen HM, Shier KL, Graber CJ. Determining a clinical framework for use of cefepime and β-lactam/β-lactamase inhibitors in the treatment of infections caused by extended-spectrum-β-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 2014; 69 (04) 871-880
  • 75 Lepeule R, Ruppé E, Le P. , et al. Cefoxitin as an alternative to carbapenems in a murine model of urinary tract infection due to Escherichia coli harboring CTX-M-15-type extended-spectrum β-lactamase. Antimicrob Agents Chemother 2012; 56 (03) 1376-1381
  • 76 Yang CC, Li SH, Chuang FR. , et al. Discrepancy between effects of carbapenems and flomoxef in treating nosocomial hemodialysis access-related bacteremia secondary to extended spectrum beta-lactamase producing Klebsiella pneumoniae in patients on maintenance hemodialysis. BMC Infect Dis 2012; 12: 206
  • 77 Guet-Revillet H, Emirian A, Groh M. , et al. Pharmacological study of cefoxitin as an alternative antibiotic therapy to carbapenems in treatment of urinary tract infections due to extended-spectrum-β-lactamase-producing Escherichia coli. Antimicrob Agents Chemother 2014; 58 (08) 4899-4901
  • 78 Matsumura Y, Yamamoto M, Nagao M. , et al. Multicenter retrospective study of cefmetazole and flomoxef for treatment of extended-spectrum-β-lactamase-producing Escherichia coli bacteremia. Antimicrob Agents Chemother 2015; 59 (09) 5107-5113
  • 79 Montravers P, Dupont H, Bedos JP, Bret P. ; Tigecycline Group. Tigecycline use in critically ill patients: a multicentre prospective observational study in the intensive care setting. Intensive Care Med 2014; 40 (07) 988-997
  • 80 De Pascale G, Montini L, Pennisi M. , et al. High dose tigecycline in critically ill patients with severe infections due to multidrug-resistant bacteria. Crit Care 2014; 18 (03) R90
  • 81 Bassetti M, Nicolini L, Repetto E, Righi E, Del Bono V, Viscoli C. Tigecycline use in serious nosocomial infections: a drug use evaluation. BMC Infect Dis 2010; 10: 287
  • 82 Ramirez J, Dartois N, Gandjini H, Yan JL, Korth-Bradley J, McGovern PC. Randomized phase 2 trial to evaluate the clinical efficacy of two high-dosage tigecycline regimens versus imipenem-cilastatin for treatment of hospital-acquired pneumonia. Antimicrob Agents Chemother 2013; 57 (04) 1756-1762
  • 83 Cha MK, Kang CI, Kim SH. , et al; Korean Network for Study on Infectious Diseases (KONSID) In vitro activities of 21 antimicrobial agents alone and in combination with aminoglycosides or fluoroquinolones against extended-spectrum-β-lactamase-producing Escherichia coli isolates causing bacteremia. Antimicrob Agents Chemother 2015; 59 (09) 5834-5837
  • 84 Martínez JA, Cobos-Trigueros N, Soriano A. , et al. Influence of empiric therapy with a beta-lactam alone or combined with an aminoglycoside on prognosis of bacteremia due to gram-negative microorganisms. Antimicrob Agents Chemother 2010; 54 (09) 3590-3596
  • 85 Abdul-Aziz MH, Lipman J, Roberts JA. Antibiotic dosing for multidrug-resistant pathogen pneumonia. Curr Opin Infect Dis 2017; 30 (02) 231-239
  • 86 Bassetti M, De Waele JJ, Eggimann P. , et al. Preventive and therapeutic strategies in critically ill patients with highly resistant bacteria. Intensive Care Med 2015; 41 (05) 776-795
  • 87 Roberts JA, Taccone FS, Lipman J. Understanding PK/PD. Intensive Care Med 2016; 42 (11) 1797-1800
  • 88 Rodvold KA, George JM, Yoo L. Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antibacterial agents. Clin Pharmacokinet 2011; 50 (10) 637-664
  • 89 De Waele JJ, Lipman J, Akova M. , et al. Risk factors for target non-attainment during empirical treatment with β-lactam antibiotics in critically ill patients. Intensive Care Med 2014; 40 (09) 1340-1351
  • 90 Bergen PJ, Bulitta JB, Kirkpatrick CM. , et al. Substantial impact of altered pharmacokinetics in critically ill patients on the antibacterial effects of meropenem evaluated via the dynamic hollow-fiber infection model. Antimicrob Agents Chemother 2017 ;AAC.02642-16
  • 91 Abdul-Aziz MH, Sulaiman H, Mat-Nor MB. , et al. Beta-Lactam Infusion in Severe Sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med 2016; 42 (10) 1535-1545
  • 92 Abdul-Aziz MH, Lipman J, Akova M. , et al; DALI Study Group. Is prolonged infusion of piperacillin/tazobactam and meropenem in critically ill patients associated with improved pharmacokinetic/pharmacodynamic and patient outcomes? An observation from the Defining Antibiotic Levels in Intensive care unit patients (DALI) cohort. J Antimicrob Chemother 2016; 71 (01) 196-207
  • 93 Roberts JA, Abdul-Aziz MH, Davis JS. , et al. Continuous versus intermittent β-lactam infusion in severe sepsis. a meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med 2016; 194 (06) 681-691
  • 94 McDonald C, Cotta MO, Little PJ. , et al. Is high-dose β-lactam therapy associated with excessive drug toxicity in critically ill patients?. Minerva Anestesiol 2016; 82 (09) 957-965
  • 95 de Montmollin E, Bouadma L, Gault N. , et al. Predictors of insufficient amikacin peak concentration in critically ill patients receiving a 25 mg/kg total body weight regimen. Intensive Care Med 2014; 40 (07) 998-1005
  • 96 Zelenitsky SA, Ariano RE. Support for higher ciprofloxacin AUC 24/MIC targets in treating Enterobacteriaceae bloodstream infection. J Antimicrob Chemother 2010; 65 (08) 1725-1732
  • 97 Niederman MS, Chastre J, Corkery K, Fink JB, Luyt CE, García MS. BAY41-6551 achieves bactericidal tracheal aspirate amikacin concentrations in mechanically ventilated patients with Gram-negative pneumonia. Intensive Care Med 2012; 38 (02) 263-271
  • 98 Kollef MH, Ricard JD, Roux D. , et al. A randomized trial of the amikacin fosfomycin inhalation system for the adjunctive therapy of Gram-negative ventilator-associated pneumonia: IASIS Trial. Chest 2016; ; (Nov): 24
  • 99 Kollef MH. COUNTERPOINT: Should inhaled antibiotic therapy be used routinely for the treatment of bacterial lower respiratory tract infections in the ICU setting? No. Chest 2017; 151 (04) 740-743
  • 100 Bassetti M, Luyt CE, Nicolau DP, Pugin J. Characteristics of an ideal nebulized antibiotic for the treatment of pneumonia in the intubated patient. Ann Intensive Care 2016; 6 (01) 35
  • 101 Solé-Lleonart C, Rouby JJ, Blot S. , et al. Nebulization of antiinfective agents in invasively mechanically ventilated adults: a systematic review and meta-analysis. Anesthesiology 2017
  • 102 Zampieri FG, Nassar Jr AP, Gusmao-Flores D, Taniguchi LU, Torres A, Ranzani OT. Nebulized antibiotics for ventilator-associated pneumonia: a systematic review and meta-analysis. Crit Care 2015; 19: 150
  • 103 Rattanaumpawan P, Lorsutthitham J, Ungprasert P, Angkasekwinai N, Thamlikitkul V. Randomized controlled trial of nebulized colistimethate sodium as adjunctive therapy of ventilator-associated pneumonia caused by Gram-negative bacteria. J Antimicrob Chemother 2010; 65 (12) 2645-2649
  • 104 Pugh R, Grant C, Cooke RP, Dempsey G. Short-course versus prolonged-course antibiotic therapy for hospital-acquired pneumonia in critically ill adults. Cochrane Database Syst Rev 2011; (10) CD007577
  • 105 Capellier G, Mockly H, Charpentier C. , et al. Early-onset ventilator-associated pneumonia in adults randomized clinical trial: comparison of 8 versus 15 days of antibiotic treatment. PLoS One 2012; 7 (08) e41290
  • 106 Chastre J, Wolff M, Fagon JY. , et al; PneumA Trial Group. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA 2003; 290 (19) 2588-2598
  • 107 Bouadma L, Luyt CE, Tubach F. , et al; PRORATA trial group. Use of procalcitonin to reduce patients' exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet 2010; 375 (9713): 463-474
  • 108 Schuetz P, Briel M, Christ-Crain M. , et al. Procalcitonin to guide initiation and duration of antibiotic treatment in acute respiratory infections: an individual patient data meta-analysis. Clin Infect Dis 2012; 55 (05) 651-662