RSS-Feed abonnieren
DOI: 10.1055/s-0037-1599090
Recent Advances in Uterine Fibroid Etiology
Publikationsverlauf
Publikationsdatum:
09. März 2017 (online)
Abstract
Uterine fibroids, also known as uterine leiomyoma (UL), are monoclonal tumors of the smooth muscle tissue layer (myometrium) of the uterus. Although ULs are considered benign, uterine fibroids are the source of major quality-of-life issues for approximately 25% of all women, who suffer from clinically significant symptoms of UL. Despite the prevalence of UL, there is no treatment option for UL which is long term, cost-effective, and leaves fertility intact. The lack of understanding about the etiology of UL contributes to the scarcity of medical therapies available. Studies have identified an important role for sex steroid hormones in the pathogenesis of UL, and have driven the use of hormonal treatment for fibroids, with mixed results. Dysregulation of cell signaling pathways, miRNA expression, and cytogenetic abnormalities have also been implicated in UL etiology. Recent discoveries on the etiology of UL and the development of relevant genetically modified rodent models of UL have started to revitalize UL research. This review outlines the major characteristics of fibroids; major contributors to UL etiology, including steroid hormones; and available preclinical animal models for UL.
-
References
- 1 Walker CL, Stewart EA. Uterine fibroids: the elephant in the room. Science 2005; 308 (5728): 1589-1592
- 2 Catherino WH, Parrott E, Segars J. Proceedings from the National Institute of Child Health and Human Development conference on the Uterine Fibroid Research Update Workshop. Fertil Steril 2011; 95 (1) 9-12
- 3 Bulun SE. Uterine fibroids. N Engl J Med 2013; 369 (14) 1344-1355
- 4 Cook H, Ezzati M, Segars JH, McCarthy K. The impact of uterine leiomyomas on reproductive outcomes. Minerva Ginecol 2010; 62 (3) 225-236
- 5 Gambadauro P. Dealing with uterine fibroids in reproductive medicine. J Obstet Gynaecol 2012; 32 (3) 210-216
- 6 Stewart EA. Uterine fibroids. Lancet 2001; 357 (9252): 293-298
- 7 Pritts EA, Parker WH, Olive DL. Fibroids and infertility: an updated systematic review of the evidence. Fertil Steril 2009; 91 (4) 1215-1223
- 8 Makker A, Goel MM. Uterine leiomyomas: effects on architectural, cellular, and molecular determinants of endometrial receptivity. Reprod Sci 2013; 20 (6) 631-638
- 9 Barker NM, Carrino DA, Caplan AI , et al. Proteoglycans in leiomyoma and normal myometrium: abundance, steroid hormone control, and implications for pathophysiology. Reprod Sci 2016; 23 (3) 302-309
- 10 Fujisawa C, Castellot Jr JJ. Matrix production and remodeling as therapeutic targets for uterine leiomyoma. J Cell Commun Signal 2014; 8 (3) 179-194
- 11 Catherino W, Salama A, Potlog-Nahari C, Leppert P, Tsibris J, Segars J. Gene expression studies in leiomyomata: new directions for research. Semin Reprod Med 2004; 22 (2) 83-90
- 12 Stewart EA, Friedman AJ, Peck K, Nowak RA. Relative overexpression of collagen type I and collagen type III messenger ribonucleic acids by uterine leiomyomas during the proliferative phase of the menstrual cycle. J Clin Endocrinol Metab 1994; 79 (3) 900-906
- 13 Arici A, Sozen I. Transforming growth factor-beta3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. Fertil Steril 2000; 73 (5) 1006-1011
- 14 Wolańska M, Sobolewski K, Drozdzewicz M, Bańkowski E. Extracellular matrix components in uterine leiomyoma and their alteration during the tumour growth. Mol Cell Biochem 1998; 189 (01/02) 145-152
- 15 Catherino WH, Leppert PC, Stenmark MH , et al. Reduced dermatopontin expression is a molecular link between uterine leiomyomas and keloids. Genes Chromosomes Cancer 2004; 40 (3) 204-217
- 16 Okamoto O, Fujiwara S, Abe M, Sato Y. Dermatopontin interacts with transforming growth factor beta and enhances its biological activity. Biochem J 1999; 337 (Pt 3): 537-541
- 17 Kobayashi Y, Nikaido T, Zhai YL , et al. In-vitro model of uterine leiomyomas: formation of ball-like aggregates. Hum Reprod 1996; 11 (8) 1724-1730
- 18 Ross RK, Pike MC, Vessey MP, Bull D, Yeates D, Casagrande JT. Risk factors for uterine fibroids: reduced risk associated with oral contraceptives. Br Med J (Clin Res Ed) 1986; 293 (6543): 359-362
- 19 Marshall LM, Spiegelman D, Barbieri RL , et al. Variation in the incidence of uterine leiomyoma among premenopausal women by age and race. Obstet Gynecol 1997; 90 (6) 967-973
- 20 Flake GP, Andersen J, Dixon D. Etiology and pathogenesis of uterine leiomyomas: a review. Environ Health Perspect 2003; 111 (8) 1037-1054
- 21 Cramer SF, Patel A. The frequency of uterine leiomyomas. Am J Clin Pathol 1990; 94 (4) 435-438
- 22 Marshall LM, Spiegelman D, Goldman MB , et al. A prospective study of reproductive factors and oral contraceptive use in relation to the risk of uterine leiomyomata. Fertil Steril 1998; 70 (3) 432-439
- 23 Lumbiganon P, Rugpao S, Phandhu-fung S, Laopaiboon M, Vudhikamraksa N, Werawatakul Y. Protective effect of depot-medroxyprogesterone acetate on surgically treated uterine leiomyomas: a multicentre case--control study. Br J Obstet Gynaecol 1996; 103 (9) 909-914
- 24 Marshall LM, Spiegelman D, Manson JE , et al. Risk of uterine leiomyomata among premenopausal women in relation to body size and cigarette smoking. Epidemiology 1998; 9 (5) 511-517
- 25 Sato F, Nishi M, Kudo R, Miyake H. Body fat distribution and uterine leiomyomas. J Epidemiol 1998; 8 (3) 176-180
- 26 Chiaffarino F, Parazzini F, La Vecchia C, Chatenoud L, Di Cintio E, Marsico S. Diet and uterine myomas. Obstet Gynecol 1999; 94 (3) 395-398
- 27 Kjerulff KH, Langenberg P, Seidman JD, Stolley PD, Guzinski GM. Uterine leiomyomas. Racial differences in severity, symptoms and age at diagnosis. J Reprod Med 1996; 41 (7) 483-490
- 28 Parker WH. Etiology, symptomatology, and diagnosis of uterine myomas. Fertil Steril 2007; 87 (4) 725-736
- 29 Wechter ME, Stewart EA, Myers ER, Kho RM, Wu JM. Leiomyoma-related hospitalization and surgery: prevalence and predicted growth based on population trends. Am J Obstet Gynecol 2011; 205 (5) 492.e1-492.e5
- 30 Huyck KL, Panhuysen CI, Cuenco KT , et al. The impact of race as a risk factor for symptom severity and age at diagnosis of uterine leiomyomata among affected sisters. Am J Obstet Gynecol 2008; 198 (2) 168.e1-168.e9
- 31 Stewart EA, Nicholson WK, Bradley L, Borah BJ. The burden of uterine fibroids for African-American women: results of a national survey. J Womens Health (Larchmt) 2013; 22 (10) 807-816
- 32 Walker CL. Role of hormonal and reproductive factors in the etiology and treatment of uterine leiomyoma. Recent Prog Horm Res 2002; 57: 277-294
- 33 D'Aloisio AA, Baird DD, DeRoo LA, Sandler DP. Early-life exposures and early-onset uterine leiomyomata in black women in the Sister Study. Environ Health Perspect 2012; 120 (3) 406-412
- 34 Maruo T, Ohara N, Wang J, Matsuo H. Sex steroidal regulation of uterine leiomyoma growth and apoptosis. Hum Reprod Update 2004; 10 (3) 207-220
- 35 Moravek MB, Yin P, Ono M , et al. Ovarian steroids, stem cells and uterine leiomyoma: therapeutic implications. Hum Reprod Update 2015; 21 (1) 1-12
- 36 Barbarisi A, Petillo O, Di Lieto A , et al. 17-beta estradiol elicits an autocrine leiomyoma cell proliferation: evidence for a stimulation of protein kinase-dependent pathway. J Cell Physiol 2001; 186 (3) 414-424
- 37 Hoekstra AV, Sefton EC, Berry E , et al. Progestins activate the AKT pathway in leiomyoma cells and promote survival. J Clin Endocrinol Metab 2009; 94 (5) 1768-1774
- 38 Burroughs KD, Fuchs-Young R, Davis B, Walker CL. Altered hormonal responsiveness of proliferation and apoptosis during myometrial maturation and the development of uterine leiomyomas in the rat. Biol Reprod 2000; 63 (5) 1322-1330
- 39 Ishikawa H, Ishi K, Serna VA, Kakazu R, Bulun SE, Kurita T. Progesterone is essential for maintenance and growth of uterine leiomyoma. Endocrinology 2010; 151 (6) 2433-2442
- 40 Patel A, Malik M, Britten J, Cox J, Catherino WH. Mifepristone inhibits extracellular matrix formation in uterine leiomyoma. Fertil Steril 2016; 105 (4) 1102-1110
- 41 Eisinger SH, Meldrum S, Fiscella K, le Roux HD, Guzick DS. Low-dose mifepristone for uterine leiomyomata. Obstet Gynecol 2003; 101 (2) 243-250
- 42 Murphy AA, Morales AJ, Kettel LM, Yen SS. Regression of uterine leiomyomata to the antiprogesterone RU486: dose-response effect. Fertil Steril 1995; 64 (1) 187-190
- 43 Kim JJ, Kurita T, Bulun SE. Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer. Endocr Rev 2013; 34 (1) 130-162
- 44 Chwalisz K, Larsen L, Mattia-Goldberg C, Edmonds A, Elger W, Winkel CA. A randomized, controlled trial of asoprisnil, a novel selective progesterone receptor modulator, in women with uterine leiomyomata. Fertil Steril 2007; 87 (6) 1399-1412
- 45 Williams AR, Critchley HO, Osei J , et al. The effects of the selective progesterone receptor modulator asoprisnil on the morphology of uterine tissues after 3 months treatment in patients with symptomatic uterine leiomyomata. Hum Reprod 2007; 22 (6) 1696-1704
- 46 Baird DD, Hill MC, Schectman JM, Hollis BW. Vitamin d and the risk of uterine fibroids. Epidemiology 2013; 24 (3) 447-453
- 47 Paffoni A, Somigliana E, Vigano' P , et al. Vitamin D status in women with uterine leiomyomas. J Clin Endocrinol Metab 2013; 98 (8) E1374-E1378
- 48 Wu JL, Segars JH. Is vitamin D the answer for prevention of uterine fibroids?. Fertil Steril 2015; 104 (3) 559-560
- 49 Roy JR, Chakraborty S, Chakraborty TR. Estrogen-like endocrine disrupting chemicals affecting puberty in humans--a review. Med Sci Monit 2009; 15 (6) RA137-RA145
- 50 Herman-Giddens ME. Recent data on pubertal milestones in United States children: the secular trend toward earlier development. Int J Androl 2006; 29 (1) 241-246 , discussion 286–290
- 51 Biro FM, Galvez MP, Greenspan LC , et al. Pubertal assessment method and baseline characteristics in a mixed longitudinal study of girls. Pediatrics 2010; 126 (3) e583-e590
- 52 Black SR, Klein DN. Early menarcheal age and risk for later depressive symptomatology: the role of childhood depressive symptoms. J Youth Adolesc 2012; 41 (9) 1142-1150
- 53 Jefferson WN, Patisaul HB, Williams CJ. Reproductive consequences of developmental phytoestrogen exposure. Reproduction 2012; 143 (3) 247-260
- 54 Patel SA, Sunde J. Primary non-clear-cell adenocarcinoma of the vagina in a diethylstilbestrol exposed woman. Mil Med 2014; 179 (4) e461-e462
- 55 Mahalingaiah S, Hart JE, Wise LA, Terry KL, Boynton-Jarrett R, Missmer SA. Prenatal diethylstilbestrol exposure and risk of uterine leiomyomata in the Nurses' Health Study II. Am J Epidemiol 2014; 179 (2) 186-191
- 56 Iguchi T, Kamiya K, Uesugi Y, Sayama K, Takasugi N. In vitro fertilization of oocytes from polyovular follicles in mouse ovaries exposed neonatally to diethylstilbestrol. In Vivo 1991; 5 (4) 359-363
- 57 Hoey L, Rowland IR, Lloyd AS, Clarke DB, Wiseman H. Influence of soya-based infant formula consumption on isoflavone and gut microflora metabolite concentrations in urine and on faecal microflora composition and metabolic activity in infants and children. Br J Nutr 2004; 91 (4) 607-616
- 58 Jefferson WN, Padilla-Banks E, Goulding EH, Lao SP, Newbold RR, Williams CJ. Neonatal exposure to genistein disrupts ability of female mouse reproductive tract to support preimplantation embryo development and implantation. Biol Reprod 2009; 80 (3) 425-431
- 59 Adlercreutz H, Yamada T, Wähälä K, Watanabe S. Maternal and neonatal phytoestrogens in Japanese women during birth. Am J Obstet Gynecol 1999; 180 (3, Pt 1): 737-743
- 60 Cojocneanu Petric R, Braicu C, Raduly L , et al. Phytochemicals modulate carcinogenic signaling pathways in breast and hormone-related cancers. Onco Targets Ther 2015; 8: 2053-2066
- 61 Möller FJ, Ledwig C, Zierau O , et al. The rat prepubertal uterine myometrium and not the luminal epithelium is predominantly affected by a chronic dietary genistein exposure. Arch Toxicol 2012; 86 (12) 1899-1910
- 62 Setchell KD, Zimmer-Nechemias L, Cai J, Heubi JE. Exposure of infants to phyto-oestrogens from soy-based infant formula. Lancet 1997; 350 (9070) 23-27
- 63 Bernbaum JC, Umbach DM, Ragan NB , et al. Pilot studies of estrogen-related physical findings in infants. Environ Health Perspect 2008; 116 (3) 416-420
- 64 McGuinn LA, Ghazarian AA, Joseph Su L, Ellison GL. Urinary bisphenol A and age at menarche among adolescent girls: evidence from NHANES 2003-2010. Environ Res 2015; 136: 381-386
- 65 Shen Y, Xu Q, Ren M, Feng X, Cai Y, Gao Y. Measurement of phenolic environmental estrogens in women with uterine leiomyoma. PLoS One 2013; 8 (11) e79838
- 66 Shen Y, Ren ML, Feng X, Cai YL, Gao YX, Xu Q. An evidence in vitro for the influence of bisphenol A on uterine leiomyoma. Eur J Obstet Gynecol Reprod Biol 2014; 178: 80-83
- 67 Ashby J, Tinwell H. Uterotrophic activity of bisphenol A in the immature rat. Environ Health Perspect 1998; 106 (11) 719-720
- 68 Nagao T, Saito Y, Usumi K, Kuwagata M, Imai K. Reproductive function in rats exposed neonatally to bisphenol A and estradiol benzoate. Reprod Toxicol 1999; 13 (4) 303-311
- 69 Rasier G, Toppari J, Parent AS, Bourguignon JP. Female sexual maturation and reproduction after prepubertal exposure to estrogens and endocrine disrupting chemicals: a review of rodent and human data. Mol Cell Endocrinol 2006; 254-255: 187-201
- 70 Betancourt AM, Eltoum IA, Desmond RA, Russo J, Lamartiniere CA. In utero exposure to bisphenol A shifts the window of susceptibility for mammary carcinogenesis in the rat. Environ Health Perspect 2010; 118 (11) 1614-1619
- 71 Pollack AZ, Buck Louis GM, Chen Z , et al. Bisphenol A, benzophenone-type ultraviolet filters, and phthalates in relation to uterine leiomyoma. Environ Res 2015; 137: 101-107
- 72 Mäkinen N, Mehine M, Tolvanen J , et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science 2011; 334 (6053): 252-255
- 73 Wang H, Shen Q, Ye LH, Ye J. MED12 mutations in human diseases. Protein Cell 2013; 4 (9) 643-646
- 74 Mittal P, Shin YH, Yatsenko SA, Castro CA, Surti U, Rajkovic A. Med12 gain-of-function mutation causes leiomyomas and genomic instability. J Clin Invest 2015; 125 (8) 3280-3284
- 75 Wang T, Zhang X, Obijuru L , et al. A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosomes Cancer 2007; 46 (4) 336-347
- 76 Marsh EE, Lin Z, Yin P, Milad M, Chakravarti D, Bulun SE. Differential expression of microRNA species in human uterine leiomyoma versus normal myometrium. Fertil Steril 2008; 89 (6) 1771-1776
- 77 Luo X, Chegini N. The expression and potential regulatory function of microRNAs in the pathogenesis of leiomyoma. Semin Reprod Med 2008; 26 (6) 500-514
- 78 Qiang W, Liu Z, Serna VA , et al. Down-regulation of miR-29b is essential for pathogenesis of uterine leiomyoma. Endocrinology 2014; 155 (3) 663-669
- 79 Crabtree JS, Jelinsky SA, Harris HA , et al. Comparison of human and rat uterine leiomyomata: identification of a dysregulated mammalian target of rapamycin pathway. Cancer Res 2009; 69 (15) 6171-6178
- 80 Kovács KA, Lengyel F, Környei JL , et al. Differential expression of Akt/protein kinase B, Bcl-2 and Bax proteins in human leiomyoma and myometrium. J Steroid Biochem Mol Biol 2003; 87 (04/05) 233-240
- 81 Karra L, Shushan A, Ben-Meir A , et al. Changes related to phosphatidylinositol 3-kinase/Akt signaling in leiomyomas: possible involvement of glycogen synthase kinase 3alpha and cyclin D2 in the pathophysiology. Fertil Steril 2010; 93 (8) 2646-2651
- 82 Yin XJ, Wang G, Khan-Dawood FS. Requirements of phosphatidylinositol-3 kinase and mammalian target of rapamycin for estrogen-induced proliferation in uterine leiomyoma- and myometrium-derived cell lines. Am J Obstet Gynecol 2007; 196 (2) 176.e1-176.e5
- 83 Varghese BV, Koohestani F, McWilliams M , et al. Loss of the repressor REST in uterine fibroids promotes aberrant G protein-coupled receptor 10 expression and activates mammalian target of rapamycin pathway. Proc Natl Acad Sci U S A 2013; 110 (6) 2187-2192
- 84 Lara Jr PN, Longmate J, Mack PC , et al. Phase II study of the AKT inhibitor MK-2206 plus erlotinib in patients with advanced non-small cell lung cancer who previously progressed on erlotinib. Clin Cancer Res 2015; 21 (19) 4321-4326
- 85 Borahay MA, Al-Hendy A, Kilic GS, Boehning D. Signaling pathways in leiomyoma: understanding pathobiology and implications for therapy. Mol Med 2015; 21: 242-256
- 86 Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2000; 351 (Pt 2): 289-305
- 87 Gustavsson I, Englund K, Faxén M, Sjöblom P, Lindblom B, Blanck A. Tissue differences but limited sex steroid responsiveness of c-fos and c-jun in human fibroids and myometrium. Mol Hum Reprod 2000; 6 (1) 55-59
- 88 Lessl M, Klotzbuecher M, Schoen S, Reles A, Stöckemann K, Fuhrmann U. Comparative messenger ribonucleic acid analysis of immediate early genes and sex steroid receptors in human leiomyoma and healthy myometrium. J Clin Endocrinol Metab 1997; 82 (8) 2596-2600
- 89 Yu L, Saile K, Swartz CD , et al. Differential expression of receptor tyrosine kinases (RTKs) and IGF-I pathway activation in human uterine leiomyomas. Mol Med 2008; 14 (05/06) 264-275
- 90 Nierth-Simpson EN, Martin MM, Chiang TC , et al. Human uterine smooth muscle and leiomyoma cells differ in their rapid 17beta-estradiol signaling: implications for proliferation. Endocrinology 2009; 150 (5) 2436-2445
- 91 Ono M, Yin P, Navarro A , et al. Inhibition of canonical WNT signaling attenuates human leiomyoma cell growth. Fertil Steril 2014; 101 (5) 1441-1449
- 92 Mangioni S, Viganò P, Lattuada D, Abbiati A, Vignali M, Di Blasio AM. Overexpression of the Wnt5b gene in leiomyoma cells: implications for a role of the Wnt signaling pathway in the uterine benign tumor. J Clin Endocrinol Metab 2005; 90 (9) 5349-5355
- 93 Tanwar PS, Lee HJ, Zhang L , et al. Constitutive activation of Beta-catenin in uterine stroma and smooth muscle leads to the development of mesenchymal tumors in mice. Biol Reprod 2009; 81 (3) 545-552
- 94 Ciarmela P, Islam MS, Reis FM , et al. Growth factors and myometrium: biological effects in uterine fibroid and possible clinical implications. Hum Reprod Update 2011; 17 (6) 772-790
- 95 Laping NJ, Everitt JI, Frazier KS , et al. Tumor-specific efficacy of transforming growth factor-beta RI inhibition in Eker rats. Clin Cancer Res 2007; 13 (10) 3087-3099
- 96 Chegini N, Luo X, Ding L, Ripley D. The expression of Smads and transforming growth factor beta receptors in leiomyoma and myometrium and the effect of gonadotropin releasing hormone analogue therapy. Mol Cell Endocrinol 2003; 209 (01/02) 9-16
- 97 Shen Y, Wu Y, Lu Q, Zhang P, Ren M. Transforming growth factor-beta signaling pathway cross-talking with ERalpha signaling pathway on regulating the growth of uterine leiomyoma activated by phenolic environmental estrogens in vitro. Tumour Biol 2015; 23 (8) 1873-1883
- 98 Di X, Andrews DM, Tucker CJ , et al. A high concentration of genistein down-regulates activin A, Smad3 and other TGF-β pathway genes in human uterine leiomyoma cells. Exp Mol Med 2012; 44 (4) 281-292
- 99 Ren Y, Yin H, Tian R , et al. Different effects of epidermal growth factor on smooth muscle cells derived from human myometrium and from leiomyoma. Fertil Steril 2011; 96 (4) 1015-1020
- 100 Peng L, Wen Y, Han Y , et al. Expression of insulin-like growth factors (IGFs) and IGF signaling: molecular complexity in uterine leiomyomas. Fertil Steril 2009; 91 (6) 2664-2675
- 101 Burroughs KD, Howe SR, Okubo Y, Fuchs-Young R, LeRoith D, Walker CL. Dysregulation of IGF-I signaling in uterine leiomyoma. J Endocrinol 2002; 172 (1) 83-93
- 102 Swartz CD, Afshari CA, Yu L, Hall KE, Dixon D. Estrogen-induced changes in IGF-I, Myb family and MAP kinase pathway genes in human uterine leiomyoma and normal uterine smooth muscle cell lines. Mol Hum Reprod 2005; 11 (6) 441-450
- 103 Cook JD, Walker CL. The Eker rat: establishing a genetic paradigm linking renal cell carcinoma and uterine leiomyoma. Curr Mol Med 2004; 4 (8) 813-824
- 104 Arslan AA, Gold LI, Mittal K , et al. Gene expression studies provide clues to the pathogenesis of uterine leiomyoma: new evidence and a systematic review. Hum Reprod 2005; 20 (4) 852-863
- 105 Everitt JI, Wolf DC, Howe SR, Goldsworthy TL, Walker C. Rodent model of reproductive tract leiomyomata. Clinical and pathological features. Am J Pathol 1995; 146 (6) 1556-1567
- 106 Prizant H, Sen A, Light A , et al. Uterine-specific loss of Tsc2 leads to myometrial tumors in both the uterus and lungs. Mol Endocrinol 2013; 27 (9) 1403-1414
- 107 Suo G, Sadarangani A, Lamarca B, Cowan B, Wang JY. Murine xenograft model for human uterine fibroids: an in vivo imaging approach. Reprod Sci 2009; 16 (9) 827-842
- 108 Tsibris JC, Porter KB, Jazayeri A , et al. Human uterine leiomyomata express higher levels of peroxisome proliferator-activated receptor gamma, retinoid X receptor alpha, and all-trans retinoic acid than myometrium. Cancer Res 1999; 59 (22) 5737-5744
- 109 Cardozo ER, Clark AD, Banks NK, Henne MB, Stegmann BJ, Segars JH. The estimated annual cost of uterine leiomyomata in the United States. Am J Obstet Gynecol 2012; 206 (3) 211.e1-211.e9
- 110 Nieman LK, Blocker W, Nansel T , et al. Efficacy and tolerability of CDB-2914 treatment for symptomatic uterine fibroids: a randomized, double-blind, placebo-controlled, phase IIb study. Fertil Steril 2011; 95 (2) 767-72.e1 , 2
- 111 Morris EP, Rymer J, Robinson J, Fogelman I. Efficacy of tibolone as “add-back therapy” in conjunction with a gonadotropin-releasing hormone analogue in the treatment of uterine fibroids. Fertil Steril 2008; 89 (2) 421-428
- 112 Loverro G, Nicolardi V, Selvaggi L. Depot GnRH analog treatment of uterine fibroids. Int J Gynaecol Obstet 1993; 43 (2) 199-201