J Pediatr Genet 2017; 06(02): 122-125
DOI: 10.1055/s-0036-1597930
Case Report
Georg Thieme Verlag KG Stuttgart · New York

Achondroplasia and Biliary Atresia: A Rare Association and Review of Literature

Ranjit I. Kylat
1   Division of Neonatal-Perinatal Medicine and Developmental Biology, Department of Pediatrics, University of Arizona, Tucson, Arizona, United States
› Institutsangaben
Weitere Informationen

Publikationsverlauf

16. August 2016

30. November 2016

Publikationsdatum:
02. Januar 2017 (online)

Abstract

Achondroplasia (ACH) occurs in most cases as de novo mutations of the gene-encoding fibroblast growth factor receptor 3 (FGFR3). Biliary atresia (BA) is a progressive neonatal inflammatory and fibro-obliterative cholangiopathy affecting the extra- and intrahepatic biliary tree to varying degrees, and it results in obstruction to bile flow and cholestatic jaundice in neonates. BA is thought to be a multifactorial disease, genome association studies have shown abnormalities in susceptibility genes, and levels of fibroblast growth factor 21 (FGF21) and fibroblast growth factor 23 (FGF23) have been noted to be increased. These two conditions occurring in the same patient has never been reported before.

 
  • References

  • 1 Horton WA, Hall JG, Hecht JT. Achondroplasia. Lancet 2007; 370 (9582): 162-172
  • 2 Nakamura K, Tanoue A. Etiology of biliary atresia as a developmental anomaly: recent advances. J Hepatobiliary Pancreat Sci 2013; 20 (5) 459-464
  • 3 Leyva-Vega M, Gerfen J, Thiel BD , et al. Genomic alterations in biliary atresia suggest region of potential disease susceptibility in 2q37.3. Am J Med Genet A 2010; 152A (4) 886-895
  • 4 Brewer JR, Mazot P, Soriano P. Genetic insights into the mechanisms of FGF signaling. Genes Dev 2016; 30 (7) 751-771
  • 5 Ornitz DM, Marie PJ. Fibroblast growth factor signaling in skeletal development and disease. Genes Dev 2015; 29 (14) 1463-1486
  • 6 Foldynova-Trantirkova S, Wilcox WR, Krejci P. Sixteen years and counting: the current understanding of fibroblast growth factor receptor 3 (FGFR3) signaling in skeletal dysplasias. Hum Mutat 2012; 33 (1) 29-41
  • 7 Laederich MB, Horton WA. FGFR3 targeting strategies for achondroplasia. Expert Rev Mol Med 2012; 14: e11 DOI: 10.1017/erm.2012.4.
  • 8 de Azevedo Moreira LM, Matos MA, Schiper PP , et al. Co-occurrence of achondroplasia and Down syndrome: genotype/phenotype association. Birth Defects Res A Clin Mol Teratol 2010; 88 (4) 228-231
  • 9 Zagory JA, Nguyen MV, Wang KS. Recent advances in the pathogenesis and management of biliary atresia. Curr Opin Pediatr 2015; 27 (3) 389-394
  • 10 Carmi R, Magee CA, Neill CA, Karrer FM. Extrahepatic biliary atresia and associated anomalies: etiologic heterogeneity suggested by distinctive patterns of associations. Am J Med Genet 1993; 45 (6) 683-693
  • 11 Guttman OR, Roberts EA, Schreiber RA, Barker CC, Ng VL ; Canadian Pediatric Hepatology Research Group. Biliary atresia with associated structural malformations in Canadian infants. Liver Int 2011; 31 (10) 1485-1493
  • 12 Yang MC, Chang MH, Chiu SN , et al. Implication of early-onset biliary atresia and extrahepatic congenital anomalies. Pediatr Int 2010; 52 (4) 569-572
  • 13 Becker DJ, Islam S, Geiger JD. Biliary atresia associated with hypoplastic left heart syndrome: a case report and review of the literature. J Pediatr Surg 2004; 39 (9) 1411-1413
  • 14 Maegawa GH, Chitayat D, Blaser S , et al. Duodenal and biliary atresia associated with facial, thyroid and auditory apparatus abnormalities: a new mandibulofacial dysostosis syndrome?. Clin Dysmorphol 2006; 15 (4) 191-196
  • 15 Jimenez-Rivera C, Jolin-Dahel KS, Fortinsky KJ, Gozdyra P, Benchimol EI. International incidence and outcomes of biliary atresia. J Pediatr Gastroenterol Nutr 2013; 56 (4) 344-354
  • 16 Deveci MS, Deveci G. Biliary atresia splenic malformation syndrome—is it a result of embryonically midline rotational defects? A case report. J Pediatr Surg 2000; 35 (9) 1377-1380
  • 17 Martínez-Frías ML, Frías JL, Galán E, Domingo R, Paisán L, Blanco M. Tracheoesophageal fistula, gastrointestinal abnormalities, hypospadias, and prenatal growth deficiency. Am J Med Genet 1992; 44 (3) 352-355
  • 18 Annerén G, Meurling S, Lilja H, Wallander J, von Döbeln U. Lethal autosomal recessive syndrome with intrauterine growth retardation, intra- and extrahepatic biliary atresia, and esophageal and duodenal atresia. Am J Med Genet 1998; 78 (3) 306-307
  • 19 Pameijer CR, Hubbard AM, Coleman B, Flake AW. Combined pure esophageal atresia, duodenal atresia, biliary atresia, and pancreatic ductal atresia: prenatal diagnostic features and review of the literature. J Pediatr Surg 2000; 35 (5) 745-747
  • 20 McGaughran JM, Donnai D, Clayton-Smith J. Biliary atresia in Kabuki syndrome. Am J Med Genet 2000; 91 (2) 157-158
  • 21 Selicorni A, Colombo C, Bonato S, Milani D, Giunta AM, Bedeschi MF. Biliary atresia and Kabuki syndrome: another case with long-term follow-up. Am J Med Genet 2001; 100 (3) 251 DOI: 10.1002/ajmg.1253.
  • 22 Nobili V, Marcellini M, Devito R, Capolino R, Viola L, Digilio MC. Hepatic fibrosis in Kabuki syndrome. Am J Med Genet A 2004; 124A (2) 209-212
  • 23 Higuchi Y, Hasegawa K, Yamashita M, Fujii Y, Tanaka H, Tsukahara H. HDR syndrome in a Japanese girl with biliary atresia: a case report. BMC Pediatr 2016; 16: 14 DOI: 10.1186/s12887-016-0550-9.
  • 24 Ke J, Zeng S, Mao J , et al. Common genetic variants of GPC1 gene reduce risk of biliary atresia in a Chinese population. J Pediatr Surg 2016; 51 (10) 1661-1664
  • 25 Mezina A, Karpen SJ. Genetic contributors and modifiers of biliary atresia. Dig Dis 2015; 33 (3) 408-414
  • 26 Ningappa M, Min J, Higgs BW, Ashokkumar C, Ranganathan S, Sindhi R. Genome-wide association studies in biliary atresia. Wiley Interdiscip Rev Syst Biol Med 2015; 7 (5) 267-273
  • 27 Cui S, Leyva-Vega M, Tsai EA , et al. Evidence from human and zebra fish that GPC1 is a biliary atresia susceptibility gene. Gastroenterology 2013; 144 (5) 1107-1115.e3 DOI: 10.1053/j.gastro.2013.01.022.
  • 28 Smith K. Biliary tract: GPC1 genetic risk further links Hedgehog signalling with pathogenesis of biliary atresia. Nat Rev Gastroenterol Hepatol 2013; 10 (3) 127 DOI: 10.1038/nrgastro.2013.20.
  • 29 Wasserman H, Ikomi C, Hafberg ET, Miethke AG, Bove KE, Backeljauw PF. Two case reports of FGF23-induced hypophosphatemia in childhood biliary atresia. Pediatrics 2016; 138 (2) e20154453 DOI: 10.1542/peds.2015-4453.
  • 30 Li D, Lu T, Shen C , et al. Expression of fibroblast growth factor 21 in patients with biliary atresia. Cytokine 2016; 83: 13-18
  • 31 Mora MC, Volka J, Cuevas-Ocampoa AK , et al. Martinez-Frias syndrome: evidence of linkage to RFX6 mutation. J Pediatr Surg Case Rep 2014; 2 (11) 492-494
  • 32 Li FB, Zhao H, Peng KR , et al. Expression of transforming growth factor-β1 and connective tissue growth factor in congenital biliary atresia and neonatal hepatitis liver tissue. Genet Mol Res 2016; 15 (1) DOI: 10.4238/gmr.15017217.
  • 33 Cofer ZC, Cui S, EauClaire SF , et al. Methylation microarray studies highlight PDGFA expression as a factor in biliary atresia. PLoS One 2016; 11 (3) e0151521 DOI: 10.1371/journal.pone.0151521.