Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000070.xml
Semin Musculoskelet Radiol 2017; 21(01): 032-036
DOI: 10.1055/s-0036-1597255
DOI: 10.1055/s-0036-1597255
Review Article
Big Data Analyses in Health and Opportunities for Research in Radiology
Further Information
Publication History
Publication Date:
02 March 2017 (online)
Abstract
This article reviews examples of big data analyses in health care with a focus on radiology. We review the defining characteristics of big data, the use of natural language processing, traditional and novel data sources, and large clinical data repositories available for research. This article aims to invoke novel research ideas through a combination of examples of analyses and domain knowledge.
-
References
- 1 Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential. Health Inf Sci Syst 2014; 2: 3
- 2 Nadkarni PM, Ohno-Machado L, Chapman WW. Natural language processing: an introduction. J Am Med Inform Assoc 2011; 18 (05) 544-551
- 3 Pons E, Braun LMM, Hunink MGM, Kors JA. Natural language processing in radiology: a systematic review. Radiology 2016; 279 (02) 329-343
- 4 Garla V, Taylor C, Brandt C. Semi-supervised clinical text classification with Laplacian SVMs: an application to cancer case management. J Biomed Inform 2013; 46 (05) 869-875
- 5 O'Connor SD, Silverman SG, Ip IK, Maehara CK, Khorasani R. Simple cyst-appearing renal masses at unenhanced CT: can they be presumed to be benign?. Radiology 2013; 269 (03) 793-800
- 6 Fiszman M, Chapman WW, Aronsky D, Evans RS, Haug PJ. Automatic detection of acute bacterial pneumonia from chest X-ray reports. J Am Med Inform Assoc 2000; 7 (06) 593-604
- 7 DiabetesForum.com. Available at: http://www.diabetesforum.com/ . Accessed October 5, 2016
- 8 breastcancer.org community. . Available at: https://community.breastcancer.org/ . Accessed October 5, 2016
- 9 Feldman R, Netzer O, Peretz A, Rosenfeld B. Utilizing text mining on online medical forums to predict label change due to adverse drug reactions. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2015:1779–1788. Sydney, NSW, Australia; August 10–13, 2015
- 10 Sampathkumar H, Chen X-W, Luo B. Mining adverse drug reactions from online healthcare forums using hidden Markov model. BMC Med Inform Decis Mak 2014; 14: 91
- 11 Ali T, Schramm D, Sokolova M, Inkpen D. Can I hear you? Sentiment analysis on medical forums. International Joint Conference on Natural Language Processing. 2013:667–673
- 12 Ji Y, Hong H, Arriaga R, Rozga A, Abowd G, Eisenstein J. Mining themes and interests in the Asperger's and autism community. Proceedings of the Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality. Stroudsburg, PA: Association for Computational Linguistics; 97–106. Baltimore, MD June 27, 2014
- 13 Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature 2009; 457 (7232): 1012-1014
- 14 And DL. What we can learn from the epic failure of Google Flu Trends. October 1, 2015. Available at: https://www.wired.com/2015/10/can-learn-epic-failure-google-flu-trends/ . Accessed October 5, 2016
- 15 Lazer D, Kennedy R, King G, Vespignani A. Google flu trends still appears sick: an evaluation of the 2013-2014 flu season. Available at: https://dash.harvard.edu/bitstream/handle/1/12016837/ssrn-id2408560_2.pdf?sequence=1 . Accessed January 9, 2017
- 16 Lazer D, Kennedy R, King G, Vespignani A. Big data. The parable of Google Flu: traps in big data analysis. Science 2014; 343 (6176): 1203-1205
- 17 Paparrizos J, White RW, Horvitz E. Screening for pancreatic adenocarcinoma using signals from Web search logs: feasibility study and results. J Oncol Pract 2016; 12 (08) 737-744
- 18 Arrington M. AOL proudly releases massive amounts of private data. TechCrunch. August 6, 2006. Available at: https://techcrunch.com/2006/08/06/aol-proudly-releases-massive-amounts-of-user-search-data/ . Accessed October 5, 2016
- 19 Yang YT, Horneffer M, DiLisio N. Mining social media and web searches for disease detection. J Public Health Res 2013; 2 (01) 17-21
- 20 HealthMap. Available at: https://www.healthmap.org/en/ . Accessed October 5, 2016
- 21 Gilpin L. How an algorithm detected the Ebola outbreak a week early, and what it could do next. . TechRepublic. August 26, 2014. Available at: http://www.techrepublic.com/article/how-an-algorithm-detected-the-ebola-outbreak-a-week-early-and-what-it-could-do-next/. Accessed October 5, 2016
- 22 Adam LM, Manca DP, Bell RC. Can Facebook be used for research? Experiences using Facebook to recruit pregnant women for a randomized controlled trial. J Med Internet Res 2016; 18 (09) e250
- 23 Sedrak MS, Cohen RB, Merchant RM, Schapira MM. Cancer communication in the social media age. JAMA Oncol 2016; 2 (06) 822-823
- 24 Rosenkrantz AB, Labib A, Pysarenko K, Prabhu V. What do patients tweet about their mammography experience?. Acad Radiol 2016; 23 (11) 1367-1371
- 25 Prabhu V, Rosenkrantz AB. Imbalance of opinions expressed on Twitter relating to CT radiation risk: an opportunity for increased radiologist representation. AJR Am J Roentgenol 2015; 204 (01) 48-51
- 26 Pathiraja F, Little D. Social media: the next frontier in radiology. Clin Radiol 2015; 70 (06) 585-587
- 27 Rosenkrantz AB, Hawkins CM. Use of Twitter polls to determine public opinion regarding content presented at a major national specialty society meeting. J Am Coll Radiol. 2016 ; September 24 (Epub ahead of print)
- 28 Johnson AEW, Pollard TJ, Shen L. , et al. MIMIC-III, a freely accessible critical care database. Sci Data 2016; 3: 160035
- 29 Appleby C. NYCLIX: New York HIE life. An expansive HIE network has taken shape in the nation's most densely populated urban area. Healthc Inform 2010; 27 (10) 29-31
- 30 Fleischman W, Lowry T, Shapiro J. The visit-data warehouse: enabling novel secondary use of health information exchange data. EGEMS (Wash DC) 2014; 2 (01) 1099
- 31 Vest JR, Gamm LD. Health information exchange: persistent challenges and new strategies. J Am Med Inform Assoc 2010; 17 (03) 288-294
- 32 Shapiro JS, Onyile A, Genes N, DiMaggio C. Validating health information exchange data for quality measurement. Ann Emerg Med 2013; 62 (4 Suppl): S94 . Available at: https://www.infona.pl/resource/bwmeta1.element.elsevier-2bf73dd7-b981-3934-b05c-9271f90d8035
- 33 Garg N, Kuperman G, Onyile A. , et al. Validating Health Information Exchange (HIE) data for quality measurement across four hospitals. AMIA Annu Symp Proc 2014; 2014: 573-579
- 34 O'Neil C. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. New York, NY: Crown/Archetype; 2016
- 35 Angwin J, Mattu S, Larson J, Kirchner L. Machine bias: there's software used across the country to predict future criminals. and it's biased against blacks. ProPublica. May 23, 2016. Available at: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing. Accessed October 6, 2016
- 36 Selby JV, Beal AC, Frank L. The Patient-Centered Outcomes Research Institute (PCORI) national priorities for research and initial research agenda. JAMA 2012; 307 (15) 1583-1584