Semin Liver Dis 2016; 36(04): 317-326
DOI: 10.1055/s-0036-1593883
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Microbiome–Host Immune System Interactions

Sylwia Smolinska
1   Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
,
Liam O'Mahony
2   Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland
› Author Affiliations
Further Information

Publication History

Publication Date:
20 December 2016 (online)

Abstract

The intestinal immune system recognizes and responds to the vast diversity of microbes present within the gut. Highly sophisticated cellular and molecular networks are continuously coordinated to tolerate the presence of a large number and diversity of bacteria on mucosal surfaces. Different types of bacteria induce different immune responses, and bacterial metabolism of dietary factors generates metabolites that have significant effects on host immune responses. Dendritic cells, epithelial cells, innate lymphoid cells, T-regulatory cells, effector lymphocytes, natural killer T cells, and B-cell responses can all be influenced by the microbiome. Many of the mechanisms being described are bacterial strain or metabolite-specific. A better understanding of the mechanisms governing microbiome–host immune responses will likely lead to novel therapeutics for inflammatory disorders.

 
  • References

  • 1 Wang ZK, Yang YS, Chen Y, Yuan J, Sun G, Peng LH. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease. World J Gastroenterol 2014; 20 (40) 14805-14820
  • 2 Shanahan F, Quigley EM. Manipulation of the microbiota for treatment of IBS and IBD-challenges and controversies. Gastroenterology 2014; 146 (6) 1554-1563
  • 3 Frei R, Lauener RP, Crameri R, O'Mahony L. Microbiota and dietary interactions: an update to the hygiene hypothesis?. Allergy 2012; 67 (4) 451-461
  • 4 Rodriguez B, Prioult G, Bibiloni R , et al. Germ-free status and altered caecal subdominant microbiota are associated with a high susceptibility to cow's milk allergy in mice. FEMS Microbiol Ecol 2011; 76 (1) 133-144
  • 5 Frei R, Akdis M, O'Mahony L. Prebiotics, probiotics, synbiotics, and the immune system: experimental data and clinical evidence. Curr Opin Gastroenterol 2015; 31 (2) 153-158
  • 6 Schiavi E, Smolinska S, O'Mahony L. Intestinal dendritic cells. Curr Opin Gastroenterol 2015; 31 (2) 98-103
  • 7 Konieczna P, Schiavi E, Ziegler M , et al. Human dendritic cell DC-SIGN and TLR-2 mediate complementary immune regulatory activities in response to Lactobacillus rhamnosus JB-1. PLoS One 2015; 10 (3) e0120261
  • 8 Bakdash G, Vogelpoel LT, van Capel TM, Kapsenberg ML, de Jong EC. Retinoic acid primes human dendritic cells to induce gut-homing, IL-10-producing regulatory T cells. Mucosal Immunol 2015; 8 (2) 265-278
  • 9 Konieczna P, Ferstl R, Ziegler M , et al. Immunomodulation by Bifidobacterium infantis 35624 in the murine lamina propria requires retinoic acid-dependent and independent mechanisms. PLoS One 2013; 8 (5) e62617
  • 10 Konieczna P, Groeger D, Ziegler M , et al. Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells. Gut 2012; 61 (3) 354-366
  • 11 Bimczok D, Kao JY, Zhang M , et al. Human gastric epithelial cells contribute to gastric immune regulation by providing retinoic acid to dendritic cells. Mucosal Immunol 2015; 8 (3) 533-544
  • 12 Karimi K, Kandiah N, Chau J, Bienenstock J, Forsythe P. A Lactobacillus rhamnosus strain induces a heme oxygenase dependent increase in Foxp3+ regulatory T cells. PLoS One 2012; 7 (10) e47556
  • 13 Iida N, Dzutsev A, Stewart CA , et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013; 342 (6161) 967-970
  • 14 Sivan A, Corrales L, Hubert N , et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015; 350 (6264) 1084-1089
  • 15 Vaishnava S, Yamamoto M, Severson KM , et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011; 334 (6053) 255-258
  • 16 Sonnenberg GF, Monticelli LA, Alenghat T , et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 2012; 336 (6086) 1321-1325
  • 17 Zheng Y, Valdez PA, Danilenko DM , et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008; 14 (3) 282-289
  • 18 Ganal SC, Sanos SL, Kallfass C , et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 2012; 37 (1) 171-186
  • 19 Kim YG, Udayanga KG, Totsuka N, Weinberg JB, Núñez G, Shibuya A. Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE2 . Cell Host Microbe 2014; 15 (1) 95-102
  • 20 Hill DA, Siracusa MC, Abt MC , et al. Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med 2012; 18 (4) 538-546
  • 21 Bain CC, Bravo-Blas A, Scott CL , et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol 2014; 15 (10) 929-937
  • 22 Franchi L, Kamada N, Nakamura Y , et al. NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat Immunol 2012; 13 (5) 449-456
  • 23 Sawa S, Cherrier M, Lochner M , et al. Lineage relationship analysis of RORgammat+ innate lymphoid cells. Science 2010; 330 (6004) 665-669
  • 24 Sanos SL, Bui VL, Mortha A , et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 2009; 10 (1) 83-91
  • 25 Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S , et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 2008; 29 (6) 958-970
  • 26 Sawa S, Lochner M, Satoh-Takayama N , et al. RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol 2011; 12 (4) 320-326
  • 27 Sonnenberg GF, Artis D. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. Immunity 2012; 37 (4) 601-610
  • 28 Kinnebrew MA, Buffie CG, Diehl GE , et al. Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 2012; 36 (2) 276-287
  • 29 Hepworth MR, Monticelli LA, Fung TC , et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 2013; 498 (7452) 113-117
  • 30 Hepworth MR, Fung TC, Masur SH , et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science 2015; 348 (6238) 1031-1035
  • 31 Goto Y, Obata T, Kunisawa J , et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 2014; 345 (6202) 1254009
  • 32 Pickard JM, Maurice CF, Kinnebrew MA , et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 2014; 514 (7524) 638-641
  • 33 von Moltke J, Ji M, Liang HE, Locksley RM. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 2016; 529 (7585) 221-225
  • 34 Symonds EL, O'Mahony C, Lapthorne S , et al. Bifidobacterium infantis 35624 protects against salmonella-induced reductions in digestive enzyme activity in mice by attenuation of the host inflammatory response. Clin Transl Gastroenterol 2012; 3: e15
  • 35 Scully P, Macsharry J, O'Mahony D , et al. Bifidobacterium infantis suppression of Peyer's patch MIP-1α and MIP-1β secretion during Salmonella infection correlates with increased local CD4+CD25+ T cell numbers. Cell Immunol 2013; 281 (2) 134-140
  • 36 Habil N, Abate W, Beal J, Foey AD. Heat-killed probiotic bacteria differentially regulate colonic epithelial cell production of human β-defensin-2: dependence on inflammatory cytokines. Benef Microbes 2014; 5 (4) 483-495
  • 37 Levy M, Thaiss CA, Zeevi D , et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 2015; 163 (6) 1428-1443
  • 38 Lin R, Jiang Y, Zhao XY , et al. Four types of Bifidobacteria trigger autophagy response in intestinal epithelial cells. J Dig Dis 2014; 15 (11) 597-605
  • 39 Wang L, Cao H, Liu L , et al. Activation of epidermal growth factor receptor mediates mucin production stimulated by p40, a Lactobacillus rhamnosus GG-derived protein. J Biol Chem 2014; 289 (29) 20234-20244
  • 40 Boonma P, Spinler JK, Venable SF, Versalovic J, Tumwasorn S. Lactobacillus rhamnosus L34 and Lactobacillus casei L39 suppress Clostridium difficile-induced IL-8 production by colonic epithelial cells. BMC Microbiol 2014; 14: 177
  • 41 Ren DY, Li C, Qin YQ , et al. Lactobacilli reduce chemokine IL-8 production in response to TNF-α and Salmonella challenge of Caco-2 cells. BioMed Res Int 2013; 2013: 925219
  • 42 Sibartie S, O'Hara AM, Ryan J , et al. Modulation of pathogen-induced CCL20 secretion from HT-29 human intestinal epithelial cells by commensal bacteria. BMC Immunol 2009; 10: 54
  • 43 Turroni F, Taverniti V, Ruas-Madiedo P , et al. Bifidobacterium bifidum PRL2010 modulates the host innate immune response. Appl Environ Microbiol 2014; 80 (2) 730-740
  • 44 Couturier-Maillard A, Secher T, Rehman A , et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest 2013; 123 (2) 700-711
  • 45 Nigro G, Rossi R, Commere PH, Jay P, Sansonetti PJ. The cytosolic bacterial peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut epithelial regeneration. Cell Host Microbe 2014; 15 (6) 792-798
  • 46 Ramanan D, Tang MS, Bowcutt R, Loke P, Cadwell K. Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus. Immunity 2014; 41 (2) 311-324
  • 47 Bouskra D, Brézillon C, Bérard M , et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 2008; 456 (7221) 507-510
  • 48 Wlodarska M, Thaiss CA, Nowarski R , et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 2014; 156 (5) 1045-1059
  • 49 Kim HJ, Kim YJ, Lee SH, Yu J, Jeong SK, Hong SJ. Effects of Lactobacillus rhamnosus on allergic march model by suppressing Th2, Th17, and TSLP responses via CD4(+)CD25(+)Foxp3(+) Tregs. Clin Immunol 2014; 153 (1) 178-186
  • 50 Liu Y, Fatheree NY, Mangalat N, Rhoads JM. Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2010; 299 (5) G1087-G1096
  • 51 Sakaguchi S, Wing K, Yamaguchi T. Dynamics of peripheral tolerance and immune regulation mediated by Treg. Eur J Immunol 2009; 39 (9) 2331-2336
  • 52 Atarashi K, Tanoue T, Oshima K , et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013; 500 (7461) 232-236
  • 53 Atarashi K, Tanoue T, Shima T , et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011; 331 (6015) 337-341
  • 54 Stefka AT, Feehley T, Tripathi P , et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci U S A 2014; 111 (36) 13145-13150
  • 55 Lyons A, O'Mahony D, O'Brien F , et al. Bacterial strain-specific induction of Foxp3+ T regulatory cells is protective in murine allergy models. Clin Exp Allergy 2010; 40 (5) 811-819
  • 56 O'Mahony C, Scully P, O'Mahony D , et al. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-kappaB activation. PLoS Pathog 2008; 4 (8) e1000112
  • 57 Di Giacinto C, Marinaro M, Sanchez M, Strober W, Boirivant M. Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-β-bearing regulatory cells. J Immunol 2005; 174 (6) 3237-3246
  • 58 Karimi K, Inman MD, Bienenstock J, Forsythe P. Lactobacillus reuteri-induced regulatory T cells protect against an allergic airway response in mice. Am J Respir Crit Care Med 2009; 179 (3) 186-193
  • 59 Tang C, Kamiya T, Liu Y , et al. Inhibition of Dectin-1 signaling ameliorates colitis by inducing Lactobacillus-mediated regulatory T cell expansion in the intestine. Cell Host Microbe 2015; 18 (2) 183-197
  • 60 Groeger D, O'Mahony L, Murphy EF , et al. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes 2013; 4 (4) 325-339
  • 61 Mortha A, Chudnovskiy A, Hashimoto D , et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 2014; 343 (6178) 1249288
  • 62 Noval Rivas M, Burton OT, Wise P , et al. A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. J Allergy Clin Immunol 2013; 131 (1) 201-212
  • 63 Rosser EC, Oleinika K, Tonon S , et al. Regulatory B cells are induced by gut microbiota-driven interleukin-1β and interleukin-6 production. Nat Med 2014; 20 (11) 1334-1339
  • 64 Goto Y, Panea C, Nakato G , et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 2014; 40 (4) 594-607
  • 65 Tanabe S. The effect of probiotics and gut microbiota on Th17 cells. Int Rev Immunol 2013; 32 (5-6) 511-525
  • 66 Olszak T, Neves JF, Dowds CM , et al. Protective mucosal immunity mediated by epithelial CD1d and IL-10. Nature 2014; 509 (7501) 497-502
  • 67 Olszak T, An D, Zeissig S , et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 2012; 336 (6080) 489-493
  • 68 Liang S, Webb T, Li Z. Probiotic antigens stimulate hepatic natural killer T cells. Immunology 2014; 141 (2) 203-210
  • 69 Childs CE, Röytiö H, Alhoniemi E , et al. Xylo-oligosaccharides alone or in synbiotic combination with Bifidobacterium animalis subsp. lactis induce bifidogenesis and modulate markers of immune function in healthy adults: a double-blind, placebo-controlled, randomised, factorial cross-over study. Br J Nutr 2014; 111 (11) 1945-1956
  • 70 Stanic B, van de Veen W, Wirz OF , et al. IL-10-overexpressing B cells regulate innate and adaptive immune responses. J Allergy Clin Immunol 2015; 135 (3) 771-80 .e8
  • 71 Mirpuri J, Raetz M, Sturge CR , et al. Proteobacteria-specific IgA regulates maturation of the intestinal microbiota. Gut Microbes 2014; 5 (1) 28-39
  • 72 Lundell AC, Rabe H, Quiding-Järbrink M , et al. Development of gut-homing receptors on circulating B cells during infancy. Clin Immunol 2011; 138 (1) 97-106
  • 73 Kawamoto S, Maruya M, Kato LM , et al. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 2014; 41 (1) 152-165
  • 74 Kruglov AA, Grivennikov SI, Kuprash DV , et al. Nonredundant function of soluble LTα3 produced by innate lymphoid cells in intestinal homeostasis. Science 2013; 342 (6163) 1243-1246
  • 75 Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2007; 2 (5) 328-339
  • 76 Friman V, Nowrouzian F, Adlerberth I, Wold AE. Increased frequency of intestinal Escherichia coli carrying genes for S fimbriae and haemolysin in IgA-deficient individuals. Microb Pathog 2002; 32 (1) 35-42
  • 77 Bunker JJ, Flynn TM, Koval JC , et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity 2015; 43 (3) 541-553
  • 78 Palm NW, de Zoete MR, Cullen TW , et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 2014; 158 (5) 1000-1010
  • 79 Sakai F, Hosoya T, Ono-Ohmachi A , et al. Lactobacillus gasseri SBT2055 induces TGF-β expression in dendritic cells and activates TLR2 signal to produce IgA in the small intestine. PLoS One 2014; 9 (8) e105370
  • 80 Dasgupta S, Erturk-Hasdemir D, Ochoa-Reparaz J, Reinecker HC, Kasper DL. Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms. Cell Host Microbe 2014; 15 (4) 413-423
  • 81 Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A 2010; 107 (27) 12204-12209
  • 82 Jones SE, Paynich ML, Kearns DB, Knight KL. Protection from intestinal inflammation by bacterial exopolysaccharides. J Immunol 2014; 192 (10) 4813-4820
  • 83 Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Adv Immunol 2014; 121: 91-119
  • 84 Thorburn AN, Macia L, Mackay CR. Diet, metabolites, and “Western-lifestyle” inflammatory diseases. Immunity 2014; 40 (6) 833-842
  • 85 Johnson-Henry KC, Pinnell LJ, Waskow AM , et al. Short-chain fructo-oligosaccharide and inulin modulate inflammatory responses and microbial communities in Caco2-bbe cells and in a mouse model of intestinal injury. J Nutr 2014; 144 (11) 1725-1733
  • 86 Jiang W, Sunkara LT, Zeng X, Deng Z, Myers SM, Zhang G. Differential regulation of human cathelicidin LL-37 by free fatty acids and their analogs. Peptides 2013; 50: 129-138
  • 87 Arpaia N, Campbell C, Fan X , et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013; 504 (7480) 451-455
  • 88 Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 2014; 111 (6) 2247-2252
  • 89 Singh N, Gurav A, Sivaprakasam S , et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014; 40 (1) 128-139
  • 90 Berndt BE, Zhang M, Owyang SY , et al. Butyrate increases IL-23 production by stimulated dendritic cells. Am J Physiol Gastrointest Liver Physiol 2012; 303 (12) G1384-G1392
  • 91 Arpaia N, Rudensky AY. Microbial metabolites control gut inflammatory responses. Proc Natl Acad Sci U S A 2014; 111 (6) 2058-2059
  • 92 Trompette A, Gollwitzer ES, Yadava K , et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 2014; 20 (2) 159-166
  • 93 Furusawa Y, Obata Y, Fukuda S , et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504 (7480) 446-450
  • 94 Zhang Z, Shi L, Pang W , et al. Dietary fiber intake regulates intestinal microflora and inhibits ovalbumin-induced allergic airway inflammation in a mouse model. PLoS One 2016; 11 (2) e0147778
  • 95 O'Mahony L, Akdis M, Akdis CA. Regulation of the immune response and inflammation by histamine and histamine receptors. J Allergy Clin Immunol 2011; 128 (6) 1153-1162
  • 96 Frei R, Ferstl R, Konieczna P , et al. Histamine receptor 2 modifies dendritic cell responses to microbial ligands. J Allergy Clin Immunol 2013; 132 (1) 194-204
  • 97 Smolinska S, Jutel M, Crameri R, O'Mahony L. Histamine and gut mucosal immune regulation. Allergy 2014; 69 (3) 273-281
  • 98 Smolinska S, Groeger D, Perez NR , et al. Histamine receptor 2 is required to suppress innate immune responses to bacterial ligands in patients with inflammatory bowel disease. Inflamm Bowel Dis 2016; 22 (7) 1575-1586
  • 99 Ferstl R, Frei R, Schiavi E , et al. Histamine receptor 2 is a key influence in immune responses to intestinal histamine-secreting microbes. J Allergy Clin Immunol 2014; 134 (3) 744-746 .e3
  • 100 Gao C, Major A, Rendon D , et al. Histamine H2 receptor-mediated suppression of intestinal inflammation by probiotic Lactobacillus reuteri . MBio 2015; 6 (6) e01358-e15
  • 101 Barcik W, Pugin B, Westermann P , et al. Histamine-secreting microbes are increased in the gut of adult asthma patients. J Allergy Clin Immunol 2016; S0091-6749(16)30709-6
  • 102 Abrahamsson TR, Wu RY, Jenmalm MC. Gut microbiota and allergy: the importance of the pregnancy period. Pediatr Res 2015; 77 (1-2) 214-219
  • 103 Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy 2014; 44 (6) 842-850
  • 104 Arrieta MC, Stiemsma LT, Dimitriu PA , et al; CHILD Study Investigators. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 2015; 7 (307) 307ra152
  • 105 Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 2012; 129 (2) 434-440 , 440.e1–440.e2
  • 106 Romano-Keeler J, Weitkamp JH. Maternal influences on fetal microbial colonization and immune development. Pediatr Res 2015; 77 (1-2) 189-195