J Knee Surg 2017; 30(06): 514-522
DOI: 10.1055/s-0036-1593365
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Arthroscopic Lateral Retinacular Release and Modified Elmslie–Trillat Operation Improve Severe Isolated Lateral Patello-Femoral Osteoarthritis

Renn-Chia Lin
1   Department of Orthopedics, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
,
Ko-Huang Lue
2   School of Medicine, Chung Shan Medical University, 402 Taichung, Taiwan
,
Ko-Hsiu Lu
1   Department of Orthopedics, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
2   School of Medicine, Chung Shan Medical University, 402 Taichung, Taiwan
› Author Affiliations
Further Information

Publication History

25 February 2016

11 August 2016

Publication Date:
03 October 2016 (online)

Abstract

To evaluate whether arthroscopic lateral retinacular release and the modified Elmslie–Trillat operation improve osteoarthritis (OA) progression and clinical outcomes in patients with severe isolated lateral patello-femoral OA. Nine women (11 knees) and one man (one knee) with isolated late-stage lateral patello-femoral OA underwent surgery. The severity of patello-femoral OA was recorded using the Merchant method, while the level of pain and anterior knee function were scored using the visual analogue scale (VAS) and Kujala knee scores, respectively. The articular cartilage was graded under arthroscopy using the Outerbridge classification. All of the patients underwent the modified Elmslie–Trillat operation after arthroscopic surgery, including lateral retinacular release. Ten patients (12 knees) had a mean 6.45 ± 0.80 mm of medial transfer, 6.02 ± 0.80 mm of anterior transfer of the tibial tubercle, and follow-up of 67.0 months. The mean VAS and Kujala knee scores improved from 8 ± 0.17 preoperatively to 2.33 ± 0.33 on the last follow-up and from 43.08 ± 2.09 to 68.83 ± 2.59, respectively (both p < 0.001). Postoperatively, all had improved subchondral bone remodeling, including cyst resolution, density and trabeculae normalization, and subchondral smoothing in the patello-femoral compartment. The patello-femoral joint space and patellar thickness increased from 0.39 ± 0.16 mm to 1.77 ± 0.18 mm and from 18.28 ± 0.67 mm to 19.60 ± 0.69 mm, respectively (p < 0.001 and p = 0.005). Treatment of severe isolated lateral patello-femoral OA using arthroscopic lateral retinacular release and the modified Elmslie–Trillat operation can improve pain relief, functional outcomes, and subchondral bone remodeling, and also restore the patello-femoral joint space and patellar thickness. Prompt transfer of the tibial tubercle seems to reverse the progress of OA radiographically.

 
  • References

  • 1 Grelsamer RP, Stein DA. Patellofemoral arthritis. J Bone Joint Surg Am 2006; 88 (08) 1849-1860
  • 2 Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat Rev Rheumatol 2012; 8 (11) 665-673
  • 3 Fulkerson JP. The etiology of patellofemoral pain in young, active patients: a prospective study. Clin Orthop Relat Res 1983; (179) 129-133
  • 4 Wu CC. Combined lateral retinacular release with drilling chondroplasty for treatment of patellofemoral osteoarthritis associated with patellar malalignment in elderly patients. Knee 2011; 18 (01) 24-29
  • 5 Ostermeier S, Holst M, Hurschler C, Windhagen H, Stukenborg-Colsman C. Dynamic measurement of patellofemoral kinematics and contact pressure after lateral retinacular release: an in vitro study. Knee Surg Sports Traumatol Arthrosc 2007; 15 (05) 547-554
  • 6 Brown DE, Alexander AH, Lichtman DM. The Elmslie-Trillat procedure: evaluation in patellar dislocation and subluxation. Am J Sports Med 1984; 12 (02) 104-109
  • 7 Fonseca F, Oliveira JP, Marques P. Maquet III procedure: what remains after initial complications—long-term results. J Orthop Surg 2013; 8: 11
  • 8 Gödde S, Rupp S, Dienst M, Seil R, Kohn D. Fracture of the proximal tibia six months after Fulkerson osteotomy. A report of two cases. J Bone Joint Surg Br 2001; 83 (06) 832-833
  • 9 Bellemans J, Cauwenberghs F, Brys P, Victor J, Fabry G. Fracture of the proximal tibia after Fulkerson anteromedial tibial tubercle transfer. A report of four cases. Am J Sports Med 1998; 26 (02) 300-302
  • 10 Naveed MA, Ackroyd CE, Porteous AJ. Long-term (ten- to 15-year) outcome of arthroscopically assisted Elmslie-Trillat tibial tubercle osteotomy. Bone Joint J 2013; 95-B (04) 478-485
  • 11 Wang CJ, Chan YS, Chen HH, Wu ST. Factors affecting the outcome of distal realignment for patellofemoral disorders of the knee. Knee 2005; 12 (03) 195-200
  • 12 Lund F, Nilsson BE. Anterior displacement of the tibial tuberosity in chondromalacia patellae. Acta Orthop Scand 1980; 51 (04) 679-688
  • 13 Barber FA, McGarry JE. Elmslie-Trillat procedure for the treatment of recurrent patellar instability. Arthroscopy 2008; 24 (01) 77-81
  • 14 Castañeda S, Roman-Blas JA, Largo R, Herrero-Beaumont G. Subchondral bone as a key target for osteoarthritis treatment. Biochem Pharmacol 2012; 83 (03) 315-323
  • 15 Neogi T, Nevitt M, Niu J. , et al. Subchondral bone attrition may be a reflection of compartment-specific mechanical load: the MOST Study. Ann Rheum Dis 2010; 69 (05) 841-844
  • 16 Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci 2010; 1192: 230-237
  • 17 Lajeunesse D, Reboul P. Subchondral bone in osteoarthritis: a biologic link with articular cartilage leading to abnormal remodeling. Curr Opin Rheumatol 2003; 15 (05) 628-633
  • 18 Bellido M, Lugo L, Roman-Blas JA. , et al. Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis. Arthritis Res Ther 2010; 12 (04) R152
  • 19 Li G, Yin J, Gao J. , et al. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther 2013; 15 (06) 223
  • 20 Intema F, Hazewinkel HA, Gouwens D. , et al. In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model. Osteoarthritis Cartilage 2010; 18 (05) 691-698
  • 21 Ding M. Microarchitectural adaptations in aging and osteoarthrotic subchondral bone issues. Acta Orthop Suppl 2010; 81 (340) 1-53
  • 22 Li B, Aspden RM. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res 1997; 12 (04) 641-651
  • 23 Karsdal MA, Leeming DJ, Dam EB. , et al. Should subchondral bone turnover be targeted when treating osteoarthritis?. Osteoarthritis Cartilage 2008; 16 (06) 638-646
  • 24 Merchant AC, Mercer RL, Jacobsen RH, Cool CR. Roentgenographic analysis of patellofemoral congruence. J Bone Joint Surg Am 1974; 56 (07) 1391-1396
  • 25 Kujala UM, Jaakkola LH, Koskinen SK, Taimela S, Hurme M, Nelimarkka O. Scoring of patellofemoral disorders. Arthroscopy 1993; 9 (02) 159-163
  • 26 Koëter S, Diks MJ, Anderson PG, Wymenga AB. A modified tibial tubercle osteotomy for patellar maltracking: results at two years. J Bone Joint Surg Br 2007; 89 (02) 180-185
  • 27 Kuroda R, Kambic H, Valdevit A, Andrish JT. Articular cartilage contact pressure after tibial tuberosity transfer. A cadaveric study. Am J Sports Med 2001; 29 (04) 403-409
  • 28 Cosgarea AJ, Schatzke MD, Seth AK, Litsky AS. Biomechanical analysis of flat and oblique tibial tubercle osteotomy for recurrent patellar instability. Am J Sports Med 1999; 27 (04) 507-512
  • 29 Tanamas SK, Wluka AE, Pelletier JP. , et al. The association between subchondral bone cysts and tibial cartilage volume and risk of joint replacement in people with knee osteoarthritis: a longitudinal study. Arthritis Res Ther 2010; 12 (02) R58
  • 30 Dieppe P. Subchondral bone should be the main target for the treatment of pain and disease progression in osteoarthritis. Osteoarthritis Cartilage 1999; 7 (03) 325-326
  • 31 McErlain DD, Ulici V, Darling M. , et al. An in vivo investigation of the initiation and progression of subchondral cysts in a rodent model of secondary osteoarthritis. Arthritis Res Ther 2012; 14 (01) R26
  • 32 Intema F, Thomas TP, Anderson DD. , et al. Subchondral bone remodeling is related to clinical improvement after joint distraction in the treatment of ankle osteoarthritis. Osteoarthritis Cartilage 2011; 19 (06) 668-675
  • 33 Vasiliadis HS, Lindahl A, Georgoulis AD, Peterson L. Malalignment and cartilage lesions in the patellofemoral joint treated with autologous chondrocyte implantation. Knee Surg Sports Traumatol Arthrosc 2011; 19 (03) 452-457
  • 34 Lustig S, Magnussen RA, Dahm DL, Parker D. Patellofemoral arthroplasty, where are we today?. Knee Surg Sports Traumatol Arthrosc 2012; 20 (07) 1216-1226
  • 35 Lonner JH, Bloomfield MR. The clinical outcome of patellofemoral arthroplasty. Orthop Clin North Am 2013; 44 (03) 271-280 , vii
  • 36 Hsieh YS, Yang SF, Chu SC. , et al. Expression changes of gelatinases in human osteoarthritic knees and arthroscopic debridement. Arthroscopy 2004; 20 (05) 482-488
  • 37 Senavongse W, Amis AA. The effects of articular, retinacular, or muscular deficiencies on patellofemoral joint stability: a biomechanical study in vitro. J Bone Joint Surg Br 2005; 87 (04) 577-582