Semin Musculoskelet Radiol 2016; 20(03): 300-304
DOI: 10.1055/s-0036-1592366
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Diabetes and Bone

Ursula Heilmeier
1   Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
,
Janina M. Patsch
2   Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
14. Oktober 2016 (online)

Abstract

Skeletal fragility has been recognized as an important feature of diabetes mellitus type 1 (T1D) and type 2 (T2D). While patients with DM1 typically display low bone mineral density (BMD) and concomitant increases in fracture risk, T2D bone disease is more complex and less understood. Although BMD is often normal or even slightly elevated, the risk of fragility fractures is disproportionally high. Alterations in bone quality (i.e., bone microstructure and matrix properties) have been reported by independent groups of researchers. Cortical porosity and the deposition of advanced glycation end-products appear to play key roles. Paired with low bone turnover, another distinct feature of T2D bone disease, secondary complications (including nephropathy, neuropathy, and angiopathy) are adding up to form a complex entity distinct from postmenopausal and age-related osteoporosis. This article offers an overview of current concepts in pathophysiology, clinical features, and imaging features of diabetic bone disease.

 
  • References

  • 1 Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 2007; 18 (4) 427-444
  • 2 Hofbauer LC, Brueck CC, Singh SK, Dobnig H. Osteoporosis in patients with diabetes mellitus. J Bone Miner Res 2007; 22 (9) 1317-1328
  • 3 Weber DR, Haynes K, Leonard MB, Willi SM, Denburg MR. Type 1 diabetes is associated with an increased risk of fracture across the life span: a population-based cohort study using The Health Improvement Network (THIN). Diabetes Care 2015; 38 (10) 1913-1920
  • 4 Massé PG, Pacifique MB, Tranchant CC , et al. Bone metabolic abnormalities associated with well-controlled type 1 diabetes (IDDM) in young adult women: a disease complication often ignored or neglected. J Am Coll Nutr 2010; 29 (4) 419-429
  • 5 Mayfield JA, White RD. Insulin therapy for type 2 diabetes: rescue, augmentation, and replacement of beta-cell function. Am Fam Physician 2004; 70 (3) 489-500
  • 6 Karstoft K, Pedersen BK. Exercise and type 2 diabetes: focus on metabolism and inflammation. Immunol Cell Biol 2016; 94 (2) 146-150
  • 7 Glaudemans AW, Uçkay I, Lipsky BA. Challenges in diagnosing infection in the diabetic foot. Diabet Med 2015; 32 (6) 748-759
  • 8 Ergen FB, Sanverdi SE, Oznur A. Charcot foot in diabetes and an update on imaging. Diabet Foot Ankle 2013; 4: 10
  • 9 Leslie WD, Rubin MR, Schwartz AV, Kanis JA. Type 2 diabetes and bone. J Bone Miner Res 2012; 27 (11) 2231-2237
  • 10 Pietschmann P, Patsch JM, Schernthaner G. Diabetes and bone. Horm Metab Res 2010; 42 (11) 763-768
  • 11 Schwartz AV, Sellmeyer DE, Ensrud KE , et al; Study of Osteoporotic Features Research Group. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 2001; 86 (1) 32-38
  • 12 Shane E, Burr D, Abrahamsen B , et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 2014; 29 (1) 1-23
  • 13 Pietschmann P, Schernthaner G, Woloszczuk W. Serum osteocalcin levels in diabetes mellitus: analysis of the type of diabetes and microvascular complications. Diabetologia 1988; 31 (12) 892-895
  • 14 Shu A, Yin MT, Stein E , et al. Bone structure and turnover in type 2 diabetes mellitus. Osteoporos Int 2012; 23 (2) 635-641
  • 15 Alam U, Arul-Devah V, Javed S, Malik RA. Vitamin D and diabetic complications: true or false prophet?. Diabetes Ther 2016; 7 (1) 11-26
  • 16 Schwartz AV, Garnero P, Hillier TA , et al; Health, Aging, and Body Composition Study. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab 2009; 94 (7) 2380-2386
  • 17 Karim L, Bouxsein ML. Effect of type 2 diabetes-related non-enzymatic glycation on bone biomechanical properties. Bone 2016; 82: 21-27
  • 18 Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell . . . and more. Endocr Rev 2013; 34 (5) 658-690
  • 19 Parajuli A, Liu C, Li W , et al. Bone's responses to mechanical loading are impaired in type 1 diabetes. Bone 2015; 81: 152-160
  • 20 García-Martín A, Rozas-Moreno P, Reyes-García R , et al. Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2012; 97 (1) 234-241
  • 21 Gennari L, Merlotti D, Valenti R , et al. Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. J Clin Endocrinol Metab 2012; 97 (5) 1737-1744
  • 22 Heilmeier U, Carpenter DR, Patsch JM , et al. Volumetric femoral BMD, bone geometry, and serum sclerostin levels differ between type 2 diabetic postmenopausal women with and without fragility fractures. Osteoporos Int 2015; 26 (4) 1283-1293
  • 23 Yamamoto M, Yamauchi M, Sugimoto T. Elevated sclerostin levels are associated with vertebral fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2013; 98 (10) 4030-4037
  • 24 Drake MT, Farr JN. Inhibitors of sclerostin: emerging concepts. Curr Opin Rheumatol 2014; 26 (4) 447-452
  • 25 Hamann C, Rauner M, Höhna Y , et al. Sclerostin antibody treatment improves bone mass, bone strength, and bone defect regeneration in rats with type 2 diabetes mellitus. J Bone Miner Res 2013; 28 (3) 627-638
  • 26 Kahn SE, Haffner SM, Heise MA , et al; ADOPT Study Group. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006; 355 (23) 2427-2443
  • 27 Zhu ZN, Jiang YF, Ding T. Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. Bone 2014; 68: 115-123
  • 28 Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature 2012; 481 (7381) 314-320
  • 29 Shao J, Wang Z, Yang T, Ying H, Zhang Y, Liu S. Bone regulates glucose metabolism as an endocrine organ through osteocalcin. Int J Endocrinol 2015; 2015: 967673
  • 30 Bala Y, Zebaze R, Seeman E. Role of cortical bone in bone fragility. Curr Opin Rheumatol 2015; 27 (4) 406-413
  • 31 Misof BM, Patsch JM, Roschger P , et al. Intravenous treatment with ibandronate normalizes bone matrix mineralization and reduces cortical porosity after two years in male osteoporosis: a paired biopsy study. J Bone Miner Res 2014; 29 (2) 440-449
  • 32 Bala Y, Bui QM, Wang XF , et al. Trabecular and cortical microstructure and fragility of the distal radius in women. J Bone Miner Res 2015; 30 (4) 621-629
  • 33 Patsch JM, Burghardt AJ, Yap SP , et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res 2013; 28 (2) 313-324
  • 34 Sundh D, Mellström D, Nilsson M, Karlsson M, Ohlsson C, Lorentzon M. Increased Cortical Porosity in Older Men With Fracture. J Bone Miner Res 2015; 30 (9) 1692-1700
  • 35 Currey JD. The effect of porosity and mineral content on the Young's modulus of elasticity of compact bone. J Biomech 1988; 21 (2) 131-139
  • 36 Schaffler MB, Burr DB. Stiffness of compact bone: effects of porosity and density. J Biomech 1988; 21 (1) 13-16
  • 37 Ural A, Vashishth D. Anisotropy of age-related toughness loss in human cortical bone: a finite element study. J Biomech 2007; 40 (7) 1606-1614
  • 38 Manske SL, Zhu Y, Sandino C, Boyd SK. Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT. Bone 2015; 79: 213-221
  • 39 Petit MA, Paudel ML, Taylor BC , et al; Osteoporotic Fractures in Men (MrOs) Study Group. Bone mass and strength in older men with type 2 diabetes: the Osteoporotic Fractures in Men Study. J Bone Miner Res 2010; 25 (2) 285-291
  • 40 Burghardt AJ, Issever AS, Schwartz AV , et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010; 95 (11) 5045-5055
  • 41 Yu EW, Putman MS, Derrico N, Abrishamanian-Garcia G, Finkelstein JS, Bouxsein ML. Defects in cortical microarchitecture among African-American women with type 2 diabetes. Osteoporos Int 2015; 26 (2) 673-679
  • 42 Shanbhogue VV, Hansen S, Frost M , et al. Compromised cortical bone compartment in type 2 diabetes mellitus patients with microvascular disease. Eur J Endocrinol 2016; 174 (2) 115-124
  • 43 Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet 2002; 359 (9321) 1929-1936
  • 44 Blake GM, Fogelman I. Dual energy x-ray absorptiometry and its clinical applications. Semin Musculoskelet Radiol 2002; 6 (3) 207-218
  • 45 Link TM. Osteoporosis imaging: state of the art and advanced imaging. Radiology 2012; 263 (1) 3-17
  • 46 Schwartz AV, Vittinghoff E, Bauer DC , et al; Study of Osteoporotic Fractures (SOF) Research Group; Osteoporotic Fractures in Men (MrOS) Research Group; Health, Aging, and Body Composition (Health ABC) Research Group. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 2011; 305 (21) 2184-2192
  • 47 Pothuaud L, Carceller P, Hans D. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone 2008; 42 (4) 775-787
  • 48 Silva BC, Leslie WD, Resch H , et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 2014; 29 (3) 518-530
  • 49 Harvey NC, Glüer CC, Binkley N , et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 2015; 78: 216-224
  • 50 Leslie WD, Aubry-Rozier B, Lamy O, Hans D ; Manitoba Bone Density Program. TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab 2013; 98 (2) 602-609
  • 51 Kim JH, Choi HJ, Ku EJ , et al. Trabecular bone score as an indicator for skeletal deterioration in diabetes. J Clin Endocrinol Metab 2015; 100 (2) 475-482
  • 52 Adams JE. Opportunistic identification of vertebral fractures. J Clin Densitom 2016; 19 (1) 54-62
  • 53 Delmas PD, Genant HK, Crans GG , et al. Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone 2003; 33 (4) 522-532
  • 54 Klotzbuecher CM, Ross PD, Landsman PB, Abbott III TA, Berger M. Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 2000; 15 (4) 721-739
  • 55 Lindsay R, Silverman SL, Cooper C , et al. Risk of new vertebral fracture in the year following a fracture. JAMA 2001; 285 (3) 320-323
  • 56 Bazzocchi A, Ferrari F, Diano D , et al. Incidental findings with dual-energy X-ray absorptiometry: spectrum of possible diagnoses. Calcif Tissue Int 2012; 91 (2) 149-156
  • 57 Adams JE. Advances in bone imaging for osteoporosis. Nat Rev Endocrinol 2013; 9 (1) 28-42
  • 58 Hospers IC, van der Laan JG, Zeebregts CJ , et al. Vertebral fracture assessment in supine position: comparison by using conventional semiquantitative radiography and visual radiography. Radiology 2009; 251 (3) 822-828
  • 59 Nakashima A, Yokoyama K, Yokoo T, Urashima M. Role of vitamin D in diabetes mellitus and chronic kidney disease. World J Diabetes 2016; 7 (5) 89-100
  • 60 Keegan TH, Schwartz AV, Bauer DC, Sellmeyer DE, Kelsey JL ; fracture intervention trial. Effect of alendronate on bone mineral density and biochemical markers of bone turnover in type 2 diabetic women: the fracture intervention trial. Diabetes Care 2004; 27 (7) 1547-1553
  • 61 Vestergaard P, Rejnmark L, Mosekilde L. Are antiresorptive drugs effective against fractures in patients with diabetes?. Calcif Tissue Int 2011; 88 (3) 209-214