Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(15): 2908-2914
DOI: 10.1055/s-0036-1592000
DOI: 10.1055/s-0036-1592000
special topic
Irradiation-Induced Palladium-Catalyzed Direct C–H Alkylation of Heteroarenes with Tertiary and Secondary Alkyl Bromides
This work was supported by NSFC (21325208, 21572212), MOST (2017YFA0303500), FRFCU, PCSIRT, and KY (2060000019).Further Information
Publication History
Received: 28 February 2018
Accepted after revision: 03 April 2018
Publication Date:
25 April 2018 (online)
Published as part of the Special Topic Modern Radical Methods and their Strategic Applications in Synthesis
Abstract
A palladium catalyst in combination with two types of phosphine ligands efficiently catalyzes direct C–H alkylation of heteroarenes with secondary and tertiary alkyl bromides under irradiation conditions. Irradiation of blue light-emitting diodes (blue LEDs) effectively excites phosphine-ligated palladium catalyst to facilitate oxidative addition with alkyl bromides, and also excites the alkylpalladium species to enable the generation of alkyl radicals to react with heteroarenes.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1592000.
- Supporting Information
-
References
- 1a Lovering F. Bikker J. Humblet C. J. Med. Chem. 2009; 52: 6752
- 1b Walters W. Green J. Weiss JR. Murcko MA. J. Med. Chem. 2011; 54: 6405
- 1c Taylor AP. Robinson RP. Fobian YM. Blakemore DC. Jones LH. Fadeyi O. Org. Biomol. Chem. 2016; 14: 6611
- 2a Hirase R. Ishihara M. Katagiri T. Tanaka Y. Yanagi H. Hotta S. Org. Electron. 2014; 15: 1481
- 2b Zhang C. Zhu X. Acc. Chem. Res. 2017; 50: 1342
- 2c Tsuji H. Nakamura E. Acc. Chem. Res. 2017; 50: 396
- 3a Dong Z. Ren Z. Thompson SJ. Xu Y. Dong G. Chem. Rev. 2017; 117: 9333
- 3b Shang R. Ilies L. Nakamura E. Chem. Rev. 2017; 117: 9086
- 3c Sun C.-L. Li B.-J. Shi Z.-J. Chem. Rev. 2011; 111: 1293
- 3d Ackermann L. Chem. Commun. 2010; 46: 4866
- 3e Arockiam PB. Bruneau C. Dixneuf PH. Chem. Rev. 2012; 112: 5879
- 4a Olah GA. Friedel–Crafts Chemistry . Wiley; New York: 1973
- 4b Roberts RM. Khalaf AA. Friedel-Crafts Alkylation Chemistry: A Century of Discovery . Marcel Dekker; New York: 1984
- 4c Iovel I. Mertins K. Kischel J. Zapf A. Beller M. Angew. Chem. Int. Ed. 2005; 44: 3913
- 4d Mertins K. Iovel I. Kischel J. Zapf A. Beller M. Angew. Chem. Int. Ed. 2005; 44: 238
- 5 Frisch AC. Beller M. Angew. Chem. Int. Ed. 2005; 44: 674
- 6a Yue W. Li Y. Jiang W. Zhen Y.-G. Wang Z.-H. Org. Lett. 2009; 13: 5430
- 6b Yao T. Hirano K. Satoh T. Miura M. Chem. Eur. J. 2010; 16: 12307
- 6c Vechorkin O. Proust V. Hu XL. Angew. Chem. Int. Ed. 2010; 49: 3061
- 7 Kaga A. Chiba S. ACS Catal. 2017; 7: 4697
- 8 Bräse S. de Meijere A. In Metal-catalyzed Cross-coupling Reactions . Diederich F. Stang PJ. Wiley-VCH; Weinheim: 1998. Chap. 3
- 9 Wu X.-J. See WJ. T. Xu K. Hirao H. Roger J. Hierso J.-C. Zhou JR. S. Angew. Chem. Int. Ed. 2014; 53: 13573
- 10 Wang G.-Z. Shang R. Fu Y. Org. Lett. 2018; 20: 888
- 11 Wang G.-Z. Shang R. Cheng W.-M. Fu Y. J. Am. Chem. Soc. 2017; 139: 18307
- 12a Parasram M. Chuentragool P. Sarkar D. Gevorgyan V. J. Am. Chem. Soc. 2016; 138: 6340
- 12b Parasram M. Chuentragool P. Wang Y. Shi Y. Gevorgyan V. J. Am. Chem. Soc. 2017; 139: 14857
- 12c Kurandina D. Parasram M. Gevorgyan V. Angew. Chem. Int. Ed. 2017; 56: 14212
- 12d Kurandina D. Rivas M. Radzhabov M. Gevorgyan V. Org. Lett. 2018; 20: 357
- 12e Ratushnyy M. Parasram M. Wang Y. Gevorgyan V. Angew. Chem. Int. Ed. 2018; 57: 2712
- 12f Chuentragool P. Parasram M. Shi Y. Gevorgyan V. J. Am. Chem. Soc. 2018; 140: 2465
- 13a Thansandote P. Raemy M. Rudolph A. Lautens M. Org. Lett. 2007; 9: 5255
- 13b Seregin IV. Gevorgyan V. Chem. Soc. Rev. 2007; 36: 1173
- 13c Verrier C. Hoarau C. Marsais F. Org. Biomol. Chem. 2009; 7: 647
- 13d Zhang Y.-H. Shi B.-F. Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 6097
- 14 During the preparation of this manuscript, Yu et al. reported examples of irradiation-induced palladium-catalyzed intermolecular C–H alkylation of heteroarene using 1-bromoadamantane. In Yu’s report, secondary and tertiary alkyl bromides possessing eliminable β-H were not demonstrated as amenable substrates for intermolecular C(sp2)–H alkylation of heteroarene, see: Zhou W.-J. Cao G.-M. Shen G. Zhu X.-Y. Gui Y.-Y. Ye J.-H. Sun L. Liao L.-L. Li J. Yu D.-G. Angew. Chem. Int. Ed. 2017; 56: 15683
- 15a McMahon CM. Alexanian EJ. Angew. Chem. Int. Ed. 2014; 53: 5974
- 15b Zou Y. Zhou JR. S. Chem. Commun. 2014; 50: 3725
- 16 Xiao B. Liu Z.-J. Liu L. Fu Y. J. Am. Chem. Soc. 2013; 135: 616
- 17a Cheng W.-M. Shang R. Fu Y. ACS Catal. 2017; 7: 907
- 17b Cheng W.-M. Shang R. Fu M.-C. Fu Y. Chem. Eur. J. 2017; 23: 2537
- 17c Nuhant P. Oderinde MS. Genovino J. Juneau A. Gagn Y. Allais C. Chinigo GM. Choi C. Sach NW. Bernier L. Fobian YM. Bundesmann MW. Khunte B. Frenette M. Fadeyi OO. Angew. Chem. Int. Ed. 2017; 56: 15309
- 18a Weiss ME. Kreis LM. Lauber A. Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 11125
- 18b Weiss ME. Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 11501
- 18c Kreis LM. Krautwald S. Pfeiffer N. Martin RE. Carreira EM. Org. Lett. 2013; 15: 1634
- 18d Parasram M. Gevorgyan V. Chem. Soc. Rev. 2017; 46: 6227
For irradiation-excited Pd catalysis, see:
For Pd(I) generation from Pd(0) and alkyl halide under thermal condition, see:
For references on irradiation-induced transition metal catalysis, see: