Synlett 2018; 29(13): 1675-1682
DOI: 10.1055/s-0036-1591997
synpacts
© Georg Thieme Verlag Stuttgart · New York

From Propargylic Fluorinations to [1,3]-Rearrangements: Anion and Ligand Effects in Cu-Acetylide Chemistry

Li-Jie Cheng
Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK   Email: c.cordier@imperial.ac.uk
,
Alexander P. N. Brown
Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK   Email: c.cordier@imperial.ac.uk
,
Christopher J. Cordier*
Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK   Email: c.cordier@imperial.ac.uk
› Author Affiliations
We appreciate financial support from Imperial College London, the EPSRC (EP/L00352X/1), and the Royal Society for a University ­Research Fellowship.
Further Information

Publication History

Received: 12 March 2018

Accepted: 01 April 2018

Publication Date:
26 April 2018 (online)


Abstract

Metal-catalyzed reactions of propargylic substrates have been widely studied. Of this reaction class, Cu-catalyzed methods have received much attention within the past decade, with Cu-allenylidenes being proposed as key reactive intermediates. This Synpacts article will outline our development of a nucleophilic fluorination protocol of propargylic electrophiles using copper catalysis. Following an analysis of the importance of anion and ligand effects, this study led us to the unexpected discovery of a formal [1,3]-rearrangement of O-propargylic alkoxypyridine derivatives that was later rendered enantioselective. By contrast to Cu-allenylidene proposals, our mechanistic findings have identified alternatives involving bimetallic intermediates.

1 Introduction

2 Propargylic Fluorination

3 Anion Effects

4 Propargylic Rearrangements

5 Mechanistic Studies

6 Conclusions

 
  • References

  • 1 For a review, see: Tsuji J. Mandai T. Angew. Chem., Int. Ed. Engl. 1995; 34: 2589
  • 3 Nishibayashi Y. Synthesis 2012; 44: 489
  • 4 Müller TJ. J. Eur. J. Org. Chem. 2001; 2021
  • 5 Ogoshi S. Nishida T. Shinagawa T. Kurosawa H. J. Am. Chem. Soc. 2001; 123: 7164
  • 6 For a review concerning Pd-catalyzed methods, see: Ma S. Eur. J. Org. Chem. 2006; 1175
  • 7 For an example involving Pd-catalysis, see: Ardolino MJ. Eno MS. Morken JP. Adv. Synth. Catal. 2013; 355: 3413
  • 8 Imada Y. Yuasa M. Nakamura I. Murahashi S.-I. J. Org. Chem. 1994; 59: 2282
  • 9 Detz RJ. Delville MM. E. Hiemstra H. van Maarseveen JH. Angew. Chem. Int. Ed. 2008; 47: 3777
  • 10 Hattori G. Matsuzawa H. Miyake Y. Nishibayashi Y. Angew. Chem. Int. Ed. 2008; 47: 3781

    • For N-nucleophiles, see:
    • 11a Ref. 8–10.
    • 11b Hattori G. Sakata K. Matsuzawa H. Tanabe Y. Miyake Y. Nishibayashi Y. J. Am. Chem. Soc. 2010; 132: 10592
    • 11c Zhang C. Wang Y.-H. Hu X.-H. Zheng Z. Xu J. Hu X.-P. Adv. Synth. Catal. 2012; 354: 2854

      For C-nucleophiles, see:
    • 12a Zhu F.-L. Zou Y. Zhang D.-Y. Wang Y.-H. Hu X.-H. Chen S. Xu J. Hu X.-P. Angew. Chem. Int. Ed. 2014; 53: 1410
    • 12b Zhu F.-L. Wang Y.-H. Zhang D.-Y. Xu J. Hu X.-P. Angew. Chem. Int. Ed. 2014; 53: 10223
    • 12c Zhang C. Hu X.-H. Wang Y.-H. Zheng Z. Xu J. Hu X.-P. J. Am. Chem. Soc. 2012; 134: 9585
    • 12d Shao W. Li H. Liu C. Liu C.-J. You S.-L. Angew. Chem. Int. Ed. 2015; 54: 7684
  • 13 Nakajima K. Shibata M. Nishibayashi Y. J. Am. Chem. Soc. 2015; 137: 2472
  • 14 Zhang C. Hu X.-H. Wang Y.-H. Zheng Z. Xu J. Hu X.-P. J. Am. Chem. Soc. 2012; 134: 9585
  • 15 Zhu F.-L. Wang Y.-H. Zhang D.-Y. Hu X.-H. Chen S. Hou C.-J. Xu J. Hu X.-P. Adv. Synth. Catal. 2014; 356: 3231
  • 16 Nishibayashi Y. Synthesis 2012; 44: 489
  • 17 Hansmann MM. Rominger F. Hashmi AS. K. Chem. Sci. 2013; 4: 1552
  • 18 Asay M. Donnadieu B. Schoeller WW. Bertrand G. Angew. Chem. Int. Ed. 2009; 48: 4796
  • 19 Wu J. Tetrahedron 2014; 55: 4289
  • 20 Hollingworth C. Gouverneur V. Chem. Commun. 2012; 48: 2929
  • 21 Cheng L.-J. Cordier CJ. Angew. Chem. Int. Ed. 2015; 54: 13734
  • 22 For a review concerning catalysis involving Cu-acetylides, see: Adeleke AF. Brown AP. N. Cheng L.-J. Mosleh KA. M. Cordier CJ. Synthesis 2017; 49: 790
  • 23 Unpublished results Cordier CJ.
    • 24a For Ru-catalyzed [1,3]-rearrangement, see: Yeung CS. Hsieh TH. H. Dong VM. Chem. Sci. 2011; 2: 544

    • For Ir-catalyzed [1,3]-rearrangement, see:
    • 24b Pan S. Ryu N. Shibata T. Org. Lett. 2013; 15: 1902

    • For LiI-promoted [1,3]-rearrangements, see:
    • 24c Rasker SZ. Bosscher MA. Shandro CA. Lanni EL. Ryu KA. Snapper GS. Utter JM. Ellsworth BA. Anderson CE. J. Org. Chem. 2012; 77: 8220
  • 25 Cheng L.-J. Brown AP. N. Cordier CJ. Chem. Sci. 2017; 8: 4299
  • 26 For a Pd-catalyzed [3,3]-rearrangement leading to pyridone products, see: Rodrigues A. Lee EE. Batey RA. Org. Lett. 2010; 12: 260

    • For discussions relating to O-alkylation vs. N-alkylations of pyridones, see:
    • 27a Comins DL. Jianhua G. Tetrahedron Lett. 1994; 35: 2819
    • 27b Bowman WR. Bridge CF. Synth. Commun. 1999; 29: 4051
    • 27c Li C. Kähny M. Breit B. Angew. Chem. Int. Ed. 2014; 53: 13780
  • 28 Woodward RB. Hoffmann R. J. Am. Chem. Soc. 1965; 87: 2511
  • 29 For a review concerning kinetic aspects of nonlinear effects, see: Blackmond DG. Acc. Chem. Res. 2000; 33: 402
  • 31 Jin L. Tolentino DR. Melaimi M. Bertrand G. Sci. Adv. 2015; 1: 1
  • 32 Worrell BT. Malik JA. Fokin VV. Science 2013; 340: 457