Synthesis 2018; 50(17): 3379-3386
DOI: 10.1055/s-0036-1591988
special topic
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Mediated Synthesis of Oxidized Amides via Organic Photoredox Catalysis

Yuliu Du
Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA   Email: twang3@albany.edu
,
Zheng Wei
Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA   Email: twang3@albany.edu
,
Ting Wang  *
Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA   Email: twang3@albany.edu
› Author Affiliations
T.W. is grateful to the University at Albany, State University of New York, for financial support. Z.W. thanks National Science Foundation for financial support (CHE-1337594).
Further Information

Publication History

Received: 01 March 2018

Accepted after revision: 21 March 2018

Publication Date:
24 April 2018 (online)


Published as part of the Special Topic Photoredox Methods and their Strategic Applications in Synthesis

Abstract

The development of visible-light-mediated synthesis of oxidized amides is reported. The reaction shows a broad substrate scope and highlights a mild nature of the reaction conditions. A range of functional groups are well tolerated in the reaction. Relying on the strategy, a variety of α-alkoxy amino acids are synthesized.

Supporting Information

 
  • References

  • 1 Mosey RA. Floreancig PE. Nat. Prod. Rep. 2012; 29: 980
    • 2a Pavan M. Bo G. Physiol. Comp. Oecol. 1953; 3: 307
    • 2b Cardani C. Ghiringhelli D. Ondelli R. Quilico A. Tetrahedron Lett. 1965; 2537
    • 2c Matsumoto T. Yanagiya M. Maeno S. Yasuda S. Tetrahedron Lett. 1968; 6297
    • 2d Trost BM. Yang H. Probst GD. J. Am. Chem. Soc. 2004; 126: 48
    • 2e Sohn J.-H. Waizumi N. Zhong HM. Rawal VH. J. Am. Chem. Soc. 2005; 127: 7290
    • 3a Tanaka J.-I. Higa T. Tetrahedron Lett. 1996; 37: 5535
    • 3b Troast DM. Porco JA. Jr. Org. Lett. 2002; 4: 991
  • 4 Perry NB. Blunt JW. Munro MH. G. Pannel LK. J. Am. Chem. Soc. 1988; 110: 4850
    • 5a Pettit GR. Xu J.-P. Chapuis J.-C. Pettit RK. Tackett LP. Doubek DL. Hooper JN. A. Schmidt JM. J. Med. Chem. 2004; 47: 1149
    • 5b Cichewicz RH. Valeriote FA. Crews P. Org. Lett. 2004; 6: 1951
    • 5c Jiang X. Garcia-Fortanet J. De Brabander JK. J. Am. Chem. Soc 2005; 127: 11254
    • 5d Jiang X. Williams N. De Brabander JK. Org. Lett. 2007; 9: 227
    • 5e Shangguan N. Kiren S. Williams LJ. Org. Lett. 2007; 9: 1093
    • 6a Vellalath S. Coric I. List B. Angew. Chem. Int. Ed. 2010; 49: 9749
    • 6b Koziol A. Frelek J. Woznica M. Furman B. Chmielewski M. Eur. J. Org. Chem. 2009; 338
    • 6c Saitoh F. Nishida H. Mukaihira T. Aikawa K. Mikami K. Eur. J. Org. Chem. 2006; 2269
    • 6d Adediran SA. Cabaret D. Flavell RR. Sammons JA. Wakselman M. Pratt RF. Bioorg. Med. Chem. 2006; 14: 7023
    • 7a Thompson AM. Blunt JW. Munro MH. G. Clark BM. J. Chem. Soc., Perkin Trans. 1 1994; 1025
    • 7b Petri AF. Sasse F. Maier ME. Eur. J. Org. Chem. 2005; 1865
    • 7c Wan S. Wu F. Rech JC. Green ME. Balachandran R. Horne WS. Day BW. Floreancig PE. J. Am. Chem. Soc. 2011; 133: 16668
    • 7d Smith AB. III. Safonov IG. Corbett RM. J. Am. Chem. Soc. 2002; 124: 11102
    • 7e Jiang X. Garcia-Fortanet J. De Brabander JK. J. Am. Chem. Soc. 2005; 127: 11254
    • 7f Shangguan N. Kiren S. Williams LJ. Org. Lett. 2007; 9: 1093
    • 7g Jewett JC. Rawal VH. Angew. Chem. Int. Ed. 2007; 46: 6502
    • 8a Katritzky AR. Pernak J. Fan W.-Q. Saczewski F. J. Org. Chem. 1991; 56: 4439
    • 8b Katritzky AR. Fan W.-Q. Black M. Pernak J. J. Org. Chem. 1992; 57: 547
    • 9a Murry JA. Frantz DE. Soheili A. Tillyer R. Grabowski EJ. J. Reider PJ. J. Am. Chem. Soc. 2001; 123: 9696
    • 9b Lou S. Moquist PN. Schaus SE. J. Am. Chem. Soc. 2007; 129: 15398
    • 9c George N. Bekkaye M. Masson G. Zhu J. Eur. J. Org. Chem. 2011; 3695
  • 10 Wan S. Green ME. Park J.-H. Floreancig PE. Org. Lett. 2007; 9: 5385
  • 11 Li M. Luo B.-L. Liu Q. Hu Y.-M. Ganesan A. Huang P. Wen S.-J. Org. Lett. 2014; 16: 10
  • 12 Li G. Fronczek FR. Antilla JC. J. Am. Chem. Soc. 2008; 130: 12216
    • 13a Smith AB. III. Safonov IG. Corbett RM. J. Am. Chem. Soc. 2002; 124: 11102
    • 13b Jewett JC. Rawal VH. Angew. Chem. Int. Ed. 2007; 46: 6502
    • 13c Smith AB. III. Jurica JA. Walsh SP. Org. Lett. 2008; 10: 5625
    • 13d Hoye TR. Hu M. J. Am. Chem. Soc. 2003; 125: 9576
    • 14a Vanier C. Wagner A. Mioskowski C. Chem. Eur. J. 2001; 7: 2318
    • 14b Sugiura M. Hagio H. Hirabayashi R. Kobayshi S. J. Am. Chem. Soc. 2001; 123: 12510
    • 14c Guirado A. Andreu R. Martiz B. Perez-Ballester S. Tetrahedron 2006; 62: 9688
    • 14d Zhang Y. Dai Y. Li G. Cheng X. Synlett 2014; 25: 2644
    • 14e Zhang J. Polishchuk EA. Chen J. Ciufolini MA. J. Org. Chem. 2009; 74: 9140

      For recent reviews, see:
    • 15a Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 15b Hopkinson MN. Sahoo B. Li JL. Glorius F. Chem. Eur. J. 2014; 20: 3874
    • 15c Kärkäs MD. Porco JA. Jr. Stephenson CR. J. Chem. Rev. 2016; 116: 9683
    • 15d Xuan J. Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 15e Yoon TP. ACS Catal. 2013; 3: 895
    • 15f Nicewicz DA. Nguyen TM. ACS Catal. 2014; 4: 355
    • 15g Fukuzumi S. Ohkubo K. Org. Biomol. Chem. 2014; 12: 6059
    • 15h Hari DP. König B. Chem. Commun. 2014; 50: 6688
    • 15i Nicewicz DA. Romero NA. Chem. Rev. 2016; 116: 10075
    • 15j Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
  • 17 The 5-methoxy-2,4-dimethyloxazole (1a) was synthesized from commercially available N-acetyl-l-alanine methyl ester via a cyclodehydration procedure (Scheme 5). For references related to the syntheses of oxazole substrates, see the Supporting Information.
    • 18a Crystal data for 3l: C17H20BrNO4, monoclinic, P21/c; a = 7.0075(7) Å, b = 10.9379(3) Å, c = 27.4093(8) Å; α = 90°, β = 90.601(2)°, γ = 90°; V = 1739.7(3) Å3; Z = 4, Z′ = 1; R 1 = 4.22%. See also the Supporting Information.
    • 18b CCDC 1826008 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.