Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(17): 3379-3386
DOI: 10.1055/s-0036-1591988
DOI: 10.1055/s-0036-1591988
special topic
Visible-Light-Mediated Synthesis of Oxidized Amides via Organic Photoredox Catalysis
T.W. is grateful to the University at Albany, State University of New York, for financial support. Z.W. thanks National Science Foundation for financial support (CHE-1337594).Further Information
Publication History
Received: 01 March 2018
Accepted after revision: 21 March 2018
Publication Date:
24 April 2018 (online)
Published as part of the Special Topic Photoredox Methods and their Strategic Applications in Synthesis
Abstract
The development of visible-light-mediated synthesis of oxidized amides is reported. The reaction shows a broad substrate scope and highlights a mild nature of the reaction conditions. A range of functional groups are well tolerated in the reaction. Relying on the strategy, a variety of α-alkoxy amino acids are synthesized.
Key words
visible light - organic photoredox catalysis - oxidized amides - α-alkoxy amino - acids - rhodamine 6GSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591988.
- Supporting Information
-
References
- 1 Mosey RA. Floreancig PE. Nat. Prod. Rep. 2012; 29: 980
- 2a Pavan M. Bo G. Physiol. Comp. Oecol. 1953; 3: 307
- 2b Cardani C. Ghiringhelli D. Ondelli R. Quilico A. Tetrahedron Lett. 1965; 2537
- 2c Matsumoto T. Yanagiya M. Maeno S. Yasuda S. Tetrahedron Lett. 1968; 6297
- 2d Trost BM. Yang H. Probst GD. J. Am. Chem. Soc. 2004; 126: 48
- 2e Sohn J.-H. Waizumi N. Zhong HM. Rawal VH. J. Am. Chem. Soc. 2005; 127: 7290
- 3a Tanaka J.-I. Higa T. Tetrahedron Lett. 1996; 37: 5535
- 3b Troast DM. Porco JA. Jr. Org. Lett. 2002; 4: 991
- 4 Perry NB. Blunt JW. Munro MH. G. Pannel LK. J. Am. Chem. Soc. 1988; 110: 4850
- 5a Pettit GR. Xu J.-P. Chapuis J.-C. Pettit RK. Tackett LP. Doubek DL. Hooper JN. A. Schmidt JM. J. Med. Chem. 2004; 47: 1149
- 5b Cichewicz RH. Valeriote FA. Crews P. Org. Lett. 2004; 6: 1951
- 5c Jiang X. Garcia-Fortanet J. De Brabander JK. J. Am. Chem. Soc 2005; 127: 11254
- 5d Jiang X. Williams N. De Brabander JK. Org. Lett. 2007; 9: 227
- 5e Shangguan N. Kiren S. Williams LJ. Org. Lett. 2007; 9: 1093
- 6a Vellalath S. Coric I. List B. Angew. Chem. Int. Ed. 2010; 49: 9749
- 6b Koziol A. Frelek J. Woznica M. Furman B. Chmielewski M. Eur. J. Org. Chem. 2009; 338
- 6c Saitoh F. Nishida H. Mukaihira T. Aikawa K. Mikami K. Eur. J. Org. Chem. 2006; 2269
- 6d Adediran SA. Cabaret D. Flavell RR. Sammons JA. Wakselman M. Pratt RF. Bioorg. Med. Chem. 2006; 14: 7023
- 7a Thompson AM. Blunt JW. Munro MH. G. Clark BM. J. Chem. Soc., Perkin Trans. 1 1994; 1025
- 7b Petri AF. Sasse F. Maier ME. Eur. J. Org. Chem. 2005; 1865
- 7c Wan S. Wu F. Rech JC. Green ME. Balachandran R. Horne WS. Day BW. Floreancig PE. J. Am. Chem. Soc. 2011; 133: 16668
- 7d Smith AB. III. Safonov IG. Corbett RM. J. Am. Chem. Soc. 2002; 124: 11102
- 7e Jiang X. Garcia-Fortanet J. De Brabander JK. J. Am. Chem. Soc. 2005; 127: 11254
- 7f Shangguan N. Kiren S. Williams LJ. Org. Lett. 2007; 9: 1093
- 7g Jewett JC. Rawal VH. Angew. Chem. Int. Ed. 2007; 46: 6502
- 8a Katritzky AR. Pernak J. Fan W.-Q. Saczewski F. J. Org. Chem. 1991; 56: 4439
- 8b Katritzky AR. Fan W.-Q. Black M. Pernak J. J. Org. Chem. 1992; 57: 547
- 9a Murry JA. Frantz DE. Soheili A. Tillyer R. Grabowski EJ. J. Reider PJ. J. Am. Chem. Soc. 2001; 123: 9696
- 9b Lou S. Moquist PN. Schaus SE. J. Am. Chem. Soc. 2007; 129: 15398
- 9c George N. Bekkaye M. Masson G. Zhu J. Eur. J. Org. Chem. 2011; 3695
- 10 Wan S. Green ME. Park J.-H. Floreancig PE. Org. Lett. 2007; 9: 5385
- 11 Li M. Luo B.-L. Liu Q. Hu Y.-M. Ganesan A. Huang P. Wen S.-J. Org. Lett. 2014; 16: 10
- 12 Li G. Fronczek FR. Antilla JC. J. Am. Chem. Soc. 2008; 130: 12216
- 13a Smith AB. III. Safonov IG. Corbett RM. J. Am. Chem. Soc. 2002; 124: 11102
- 13b Jewett JC. Rawal VH. Angew. Chem. Int. Ed. 2007; 46: 6502
- 13c Smith AB. III. Jurica JA. Walsh SP. Org. Lett. 2008; 10: 5625
- 13d Hoye TR. Hu M. J. Am. Chem. Soc. 2003; 125: 9576
- 14a Vanier C. Wagner A. Mioskowski C. Chem. Eur. J. 2001; 7: 2318
- 14b Sugiura M. Hagio H. Hirabayashi R. Kobayshi S. J. Am. Chem. Soc. 2001; 123: 12510
- 14c Guirado A. Andreu R. Martiz B. Perez-Ballester S. Tetrahedron 2006; 62: 9688
- 14d Zhang Y. Dai Y. Li G. Cheng X. Synlett 2014; 25: 2644
- 14e Zhang J. Polishchuk EA. Chen J. Ciufolini MA. J. Org. Chem. 2009; 74: 9140
- 15a Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 15b Hopkinson MN. Sahoo B. Li JL. Glorius F. Chem. Eur. J. 2014; 20: 3874
- 15c Kärkäs MD. Porco JA. Jr. Stephenson CR. J. Chem. Rev. 2016; 116: 9683
- 15d Xuan J. Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
- 15e Yoon TP. ACS Catal. 2013; 3: 895
- 15f Nicewicz DA. Nguyen TM. ACS Catal. 2014; 4: 355
- 15g Fukuzumi S. Ohkubo K. Org. Biomol. Chem. 2014; 12: 6059
- 15h Hari DP. König B. Chem. Commun. 2014; 50: 6688
- 15i Nicewicz DA. Romero NA. Chem. Rev. 2016; 116: 10075
- 15j Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
- 16a Zhao G. Kaur S. Wang T. Org. Lett. 2017; 19: 3291
- 16b Wu K. Du Y. Wang T. Org. Lett. 2017; 19: 5669
- 17 The 5-methoxy-2,4-dimethyloxazole (1a) was synthesized from commercially available N-acetyl-l-alanine methyl ester via a cyclodehydration procedure (Scheme 5). For references related to the syntheses of oxazole substrates, see the Supporting Information.
- 18a Crystal data for 3l: C17H20BrNO4, monoclinic, P21/c; a = 7.0075(7) Å, b = 10.9379(3) Å, c = 27.4093(8) Å; α = 90°, β = 90.601(2)°, γ = 90°; V = 1739.7(3) Å3; Z = 4, Z′ = 1; R 1 = 4.22%. See also the Supporting Information.
- 18b CCDC 1826008 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
For recent reviews, see: