Synlett 2018; 29(08): 999-1007
DOI: 10.1055/s-0036-1591939
synpacts
© Georg Thieme Verlag Stuttgart · New York

Unconventional Conjugated Polymers Derived from a Common Set of trans-Enediyne Monomers

Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA   Email: yangqin@unm.edu
› Author Affiliations
The author would like to acknowledge NSF (DMR-1453083) for financial support for this research, and NM EPSCoR (NSF Grant No. IIA-1301346) and USDA (NIFA 2015-38422-24059) for partially supporting the research.
Further Information

Publication History

Received: 26 December 2017

Accepted after revision: 25 January 2018

Publication Date:
15 February 2018 (online)


Abstract

This account describes our recent efforts in the design and synthesis of several series of unconventional conjugated polymers derived from a common set of trans-enediyne (tEDY) monomers. The journey started with a failed attempt, through acyclic diene metathesis of triene monomers, to prepare soluble polyacetylenes (PAs) having cross-conjugated side-groups on alternate double bonds along the main chain. At this seemingly dead end of the project, we found that the tEDY intermediates leading to triene monomers could undergo alkyne metathesis to generate soluble polydiacetylenes (PDAs). Such acyclic enediyne metathesis represents the first example of a solution synthesis of PDAs, in contrast to the conventional topochemical methods. By applying Glaser–Hay-type reaction conditions with selected tEDY monomers, polytriacetylenes were smoothly obtained; these possessed aromatic units directly attached to the polymer main chains, which significantly affected the electronic properties of the polymers. Furthermore, through hydroboration of the tEDY monomers, ‘boron-doped’ polyacetylenes (BDPAs) were prepared that can be considered as PAs with every fourth double bond replaced with a boron atom. These BDPAs represent the first boron main-chain conjugated polymers lacking aromatic units along the backbone, potentially enhancing electronic delocalization along the main chain.

 
  • References

  • 1 Handbook of Conducting Polymers . Skotheim TA. Reynolds JR. CRC Press; Boca Raton: 2007. 3rd ed.
    • 2a Garnier F. Hajlaoui R. Yassar A. Srivastava P. Science 1994; 265: 1684
    • 2b Crone B. Dodabalapur A. Lin YY. Filas RW. Bao Z. LaDuca A. Sarpeshkar R. Katz HE. Li W. Nature 2000; 403: 521
    • 2c Sirringhaus H. Bird M. Zhao N. Adv. Mater. (Weinheim, Ger.) 2010; 22: 3893
    • 3a Burroughes JH. Bradley DD. C. Brown AR. Marks RN. Mackay K. Friend RH. Burns PL. Holmes AB. Nature 1990; 347: 539
    • 3b Friend RH. Gymer RW. Holmes AB. Burroughes JH. Marks RN. Taliani C. Bradley DD. C. Dos Santos DA. Brédas JL. Lögdlund M. Salaneck WR. Nature 1999; 397: 121
    • 4a Organic Photovoltaics: Mechanisms, Materials, and Devices . Sun S.-S. Sariciftci NS. CRC Press; 2005
    • 4b Cheng Y.-J. Yang S.-H. Hsu C.-S. Chem. Rev. 2009; 109: 5868
    • 4c Price SC. Stuart AC. Yang L. Zhou H. You W. J. Am. Chem. Soc. 2011; 133: 4625
    • 5a Argun AA. Aubert P.-H. Thompson BC. Schwendeman I. Gaupp CL. Hwang J. Pinto NJ. Tanner DB. MacDiarmid AG. Reynolds JR. Chem. Mater. 2004; 16: 4401
    • 5b Mortimer RJ. Dyer AL. Reynolds JR. Displays 2006; 27: 2
    • 6a Möller S. Perlov C. Jackson W. Taussig C. Forrest SR. Nature 2003; 426: 166
    • 6b Scott JC. Bozano LD. Adv. Mater. (Weinheim, Ger.) 2007; 19: 1452
  • 7 Samuel ID. W. Turnbull GA. Chem. Rev. 2007; 107: 1272
  • 8 Thomas III SW. Joly GD. Swager TM. Chem. Rev. 2007; 107: 1339
  • 9 Smela E. Adv. Mater. (Weinheim, Ger.) 2003; 15: 481
  • 10 McAndrew TP. Trends Polym. Sci. (Cambridge U. K.) 1997; 5: 7
    • 12a Edwards JH. Feast WJ. Bott DC. Polymer 1984; 25: 395
    • 12b Feast WJ. Winter JN. J. Chem. Soc., Chem. Commun. 1985; 202
    • 12c Bott DC. Brown CS. Chai CK. Walker NS. Feast WJ. Foot PJ. S. Calvert PD. Billingham NC. Friend RH. Synth. Met. 1986; 14: 245
    • 12d Swager TM. Dougherty DA. Grubbs RH. J. Am. Chem. Soc. 1988; 110: 2973
    • 12e Reibel D. Nuffer R. Mathis C. Macromolecules 1992; 25: 7090
    • 12f Luo K. Kim SJ. Cartwright AN. Rzayev J. Macromolecules 2011; 44: 4665
    • 13a Masuda T. Hamano T. Tsuchihara K. Higashimura T. Macromolecules 1990; 23: 1374
    • 13b Lam JW. Y. Tang BZ. Acc. Chem. Res. 2005; 38: 745
    • 13c Liu J. Lam JW. Y. Tang BZ. Chem. Rev. 2009; 109: 5799
    • 14a Akagi K. Chem. Rev. 2009; 109: 5354
    • 14b Jia H. Teraguchi M. Aoki T. Abe Y. Kaneko T. Hadano S. Namikoshi T. Ohishi T. Macromolecules 2010; 43: 8353
    • 14c Mori T. Kyotani M. Akagi K. Macromolecules 2010; 43: 8363
    • 15a Ginsburg EJ. Gorman CB. Marder SR. Grubbs RH. J. Am. Chem. Soc. 1989; 111: 7621
    • 15b Jozefiak TH. Ginsburg EJ. Gorman CB. Grubbs RH. Lewis NS. J. Am. Chem. Soc. 1993; 115: 4705
    • 15c Gorman CB. Ginsburg EJ. Grubbs RH. J. Am. Chem. Soc. 1993; 115: 1397
    • 15d Johnston DH. Gao L. Lonergan MC. Macromolecules 2010; 43: 2676
    • 16a Wagener KB. Wolfe PS. In NATO ASI Series: Metathesis Polymerization of Olefins and Polymerization of Alkynes . Imamoglu Y. Kluwer; Dordrecht: 1998: 277
    • 16b Opper KL. Wagener KB. J. Polym. Sci., Part A: Polym. Chem. 2011; 49: 821
    • 16c Mutlu H. de Espinosa LM. Meier MA. R. Chem. Soc. Rev. 2011; 40: 1404
    • 17a Berda EB. Wagener KB. Macromolecules 2008; 41: 5116
    • 17b Mei J. Aitken BS. Graham KR. Wagener KB. Reynolds JR. Macromolecules 2010; 43: 5909
    • 18a Tao D. Wagener KB. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1993; 34: 469
    • 18b Watson MD. Wagener KB. Macromolecules 2000; 33: 3196
    • 19a Qin Y. Hillmyer MA. Macromolecules 2009; 42: 6429
    • 19b Peetz R. Narwark O. Herzog O. Brocke S. Thorn-Csányi E. Synth. Met. 2001; 119: 539
    • 19c Fox HH. Schrock RR. O’Dell R. Organometallics 1994; 13: 635
    • 19d Weychardt H. Plenio H. Organometallics 2008; 27: 1479
    • 19e Yamamoto N. Ito R. Geerts Y. Nomura K. Macromolecules 2009; 42: 5104
    • 19f Yang G. Hu K. Qin Y. J. Polym. Sci., Part A: Polym. Chem. 2014; 52: 591
    • 19g Zhang Z. Qin Y. ACS Macro Lett. 2015; 4: 679
    • 19h Zhang Z. Qin Y. Macromolecules 2016; 49: 3318
  • 20 Tao D. Wagener KB. Macromolecules 1994; 27: 1281
    • 21a Zuilhof H. Barentsen HM. van Dijk M. Sudhölter EJ. R. Hoofman JO. M. Siebbeles LD. A. de Haas MP. Warman JM. In Supramolecular Photosensitive and Electroactive Materials . Nalwa HS. Academic Press; San Diego: 2001: 339
    • 21b Schott M. In Photophysics of Molecular Materials: From Single Molecules to Single Crystals. Lanzani G. Wiley-VCH; Weinheim: 2006: 49
  • 22 Wegner G. Z. Naturforsch., B 1969; 24: 824
    • 23a Dubin F. Melet R. Barisien T. Grousson R. Legrand L. Schott M. Voliotis V. Nat. Phys. 2006; 2: 32
    • 23b Legrand L. Al Choueiry A. Holcman J. Enderlin A. Melet R. Barisien T. Voliotis V. Grousson R. Schott M. Phys. Status Solidi B 2008; 245: 2702
    • 24a Chance RR. Baughman RH. Müller H. Eckhardt CJ. J. Chem. Phys. 1977; 67: 3616
    • 24b Dei S. Matsumoto A. Matsumoto A. Macromolecules 2008; 41: 2467
    • 24c Tanioku C. Matsukawa K. Matsumoto A. ACS Appl. Mater. Interfaces 2013; 5: 940
  • 25 Patel GN. Chance RR. Witt JD. J. Polym. Sci., Polym. Lett. Ed. 1978; 16: 607
    • 26a Müller H. Eckhardt CJ. Mol. Cryst. Liq. Cryst. 1978; 45: 313
    • 26b Carpick RW. Sasaki DY. Burns AR. Langmuir 2000; 16: 1270
  • 27 Tieke B. Lieser G. Wegner G. J. Polym. Sci., Polym. Chem. Ed. 1979; 17: 1631
    • 28a Charych DH. Nagy JO. Spevak W. Bednarski MD. Science 1993; 261: 585
    • 28b Reichert A. Nagy JO. Spevak W. Charych DH. J. Am. Chem. Soc. 1995; 117: 829
    • 29a Kanetake T. Ishikawa K. Hasegawa T. Koda T. Takeda K. Hasegawa M. Kubodera K. Kobayashi H. Appl. Phys. Lett. 1989; 54: 2287
    • 29b Sarkar A. Okada S. Matsuzawa H. Matsuda H. Nakanishi H. J. Mater. Chem. 2000; 10: 819
    • 30a Nakanishi H. Matsuda H. Kato M. Mol. Cryst. Liq. Cryst. 1984; 105: 77
    • 30b Se K. Ohnuma H. Kotaka T. Macromolecules 1984; 17: 2126
    • 31a Peng H. Lu Y. Langmuir 2006; 22: 5525
    • 31b Peng H. J. Phys. Chem. B 2007; 111: 8885
    • 31c Sun X. Chen T. Huang S. Cai F. Chen X. Yang Z. Li L. Cao H. Lu Y. Peng H. J. Phys. Chem. B 2010; 114: 2379
  • 32 Kim T. Ye Q. Sun L. Chan KC. Crooks RM. Langmuir 1996; 12: 6065
  • 33 Barentsen HM. van Dijk M. Kimkes P. Zuilhof H. Sudhölter EJ. R. Macromolecules 1999; 32: 1753
    • 34a Talwar S. Kamath M. Das K. Sinha U. Polym. Commun. 1990; 31: 198
    • 34b Kamath M. Kim WH. Li L. Kumar J. Tripathy S. Babu KN. Talwar SS. Macromolecules 1993; 26: 5954
    • 34c Sarkar A. Kodali NB. Kamath MB. Bhagwat LP. Talwar SS. J. Macromol. Sci., Part A: Pure Appl. Chem. 1999; 36: 211
    • 34d Curtis SM. Le N. Fowler FW. Lauher JW. Cryst. Growth Des. 2005; 5: 2313
    • 34e Diegelmann SR. Hartman N. Markovic N. Tovar JD. J. Am. Chem. Soc. 2012; 134: 2028
    • 34f Matsuo H. Okada S. Nakanishi H. Matsuda H. Takaragi S. Polym. J. (Tokyo, Jpn.) 2002; 34: 825
    • 34g Chan Y.-H. Lin J.-T. Chen I.-WP. Chen C.-H. J. Phys. Chem. B 2005; 109: 19161
    • 34h Néabo JR. Tohoundjona KI. S. Morin J.-F. Org. Lett. 2011; 13: 1358
    • 35a Bunz UH. F. Acc. Chem. Res. 2001; 34: 998
    • 35b Fürstner A. Davies PW. Chem. Commun. 2005; 2307
    • 35c Finke AD. Moore JS. In Synthesis of Polymers . Schluter DA. Hawker C. Sakamoto J. Wiley-VCH; Weinheim: 2012: 135
    • 35d Yang H. Jin Y. Zhang W. J. Mater. Chem. A 2014; 2: 5986
    • 35e Schrock RR. Chem. Commun. 2013; 49: 5529
  • 36 Hu K. Yang H. Zhang W. Qin Y. Chem. Sci. 2013; 4: 3649
  • 37 Kloppenburg L. Jones D. Bunz UH. F. Macromolecules 1999; 32: 4194
  • 38 Schrock RR. Polyhedron 1995; 14: 3177
  • 39 Yang H. Liu Z. Zhang W. Adv. Synth. Catal. 2013; 355: 885
  • 40 Jyothish K. Zhang W. Angew. Chem. Int. Ed. 2011; 50: 3435
  • 41 Rughooputh SD. D. V. Phillips D. Bloor D. Ando DJ. Chem. Phys. Lett. 1984; 106: 247
    • 42a Fowler FW. Lauher JW. J. Phys. Org. Chem. 2000; 13: 850
    • 42b Edelmann MJ. Ordermatt S. Diederich F. Chimia 2001; 55: 132
    • 43a Schenning AP. H. J. Martin RE. Ito M. Diederich F. Boudon C. Gisselbrecht J.-P. Gross M. Chem. Commun. 1998; 1013
    • 43b Schenning AP. H. J. Arndt J.-D. Ito M. Stoddart A. Schreiber M. Siemsen P. Martin RE. Boudon C. Gisselbrecht J.-P. Gross M. Gramlich V. Diederich F. Helv. Chim. Acta 2001; 84: 296
    • 44a Xiao J. Yang M. Lauher JW. Fowler FW. Angew. Chem. Int. Ed. 2000; 39: 2132
    • 44b Lauher JW. Fowler FW. Goroff NS. Acc. Chem. Res. 2008; 41: 1215
    • 45a Martin RE. Gubler U. Cornil J. Balakina M. Boudon C. Bosshard C. Gisselbrecht J.-P. Diederich F. Günter P. Gross M. Brédas JL. Chem. Eur. J. 2000; 6: 3622
    • 45b Martin RE. Gubler U. Boudon C. Bosshard C. Gisselbrecht J.-P. Günter P. Gross M. Diederich F. Chem. Eur. J. 2000; 6: 4400
  • 46 Gubler U. Bosshard C. Günter P. Balakina MY. Cornil J. Brédas JL. Martin RE. Diederich F. Opt. Lett. 1999; 24: 1599
  • 47 Hu K. Qin Y. J. Macromol. Sci., Part A: Pure Appl. 2016; 54: 1391
  • 48 Liu Q. Burton DJ. Tetrahedron Lett. 1997; 38: 4371
  • 49 Contemporary Boron Chemistry . Davidson MG. Hughes AK. Marder TB. Wade K. Royal Society of Chemistry; Cambridge: 2000
    • 50a Roberts MF. Jenekhe SA. Cameron A. McMillan M. Perlstein J. Chem. Mater. 1994; 6: 658
    • 50b Connolly JW. Dudis DS. Kumar S. Gelbaum LT. Venkatasubramanian GN. Chem. Mater. 1996; 8: 54
    • 50c Jäkle F. Chem. Rev. 2010; 110: 3985
    • 51a Roscoe SB. Fréchet JM. J. Walzer JF. Dias AJ. Science 1998; 280: 270
    • 51b Mager M. Becke S. Windisch H. Denninger U. Angew. Chem. Int. Ed. 2001; 40: 1898
    • 51c Qin Y. Cheng G. Sundararaman A. Jäkle F. J. Am. Chem. Soc. 2002; 124: 12672
    • 51d Qin Y. Cheng G. Achara O. Parab K. Jäkle F. Macromolecules 2004; 37: 7123
    • 52a Qin Y. Cui C. Jäkle F. Macromolecules 2008; 41: 2972
    • 52b Qin Y. Shipman P. Jäkle F. Macromol. Rapid Commun. 2012; 33: 562
    • 52c Pawar GM. Sheridan JB. Jäkle F. Eur. J. Inorg. Chem. 2016; 2227
    • 53a Qin Y. Pagba C. Piotrowiak P. Jäkle F. J. Am. Chem. Soc. 2004; 126: 7015
    • 53b Wang X.-Y. Weck M. Macromolecules 2005; 38: 7219
    • 53c Qin Y. Kiburu I. Shah S. Jäkle F. Macromolecules 2006; 39: 9041
    • 54a Wideman T. Remsen EE. Cortez E. Chlanda V. Sneddon LG. Chem. Mater. 1998; 10: 412
    • 54b Welna DT. Bender JD. Wei X. Sneddon LG. Allcock HR. Adv. Mater. (Weinheim, Ger.) 2005; 17: 859
    • 55a Parab K. Venkatasubbaiah K. Jäkle F. J. Am. Chem. Soc. 2006; 128: 12879
    • 55b Cambre JN. Roy D. Sumerlin BS. J. Polym. Sci., Part A: Polym. Chem. 2012; 50: 3373
    • 55c Cheng F. Wan W.-M. Zhou Y. Sun X.-L. Bonder EM. Jäkle F. Polym. Chem. 2015; 6: 4650
    • 56a Qin Y. Sukul V. Pagakos D. Cui C. Jäkle F. Macromolecules 2005; 38: 8987
    • 56b Qin Y. Cui C. Jäkle F. Macromolecules 2007; 40: 1413
    • 56c Cambre JN. Roy D. Gondi SR. Sumerlin BS. J. Am. Chem. Soc. 2007; 129: 10348
    • 56d De P. Gondi SR. Roy D. Sumerlin BS. Macromolecules 2009; 42: 5614
    • 56e Cui C. Bonder EM. Jäkle F. J. Am. Chem. Soc. 2010; 132: 1810
    • 56f Deng CC. Brooks WL. A. Abboud KA. Sumerlin BS. ACS Macro Lett. 2015; 4: 220
    • 57a Matsumi N. Naka K. Chujo Y. J. Am. Chem. Soc. 1998; 120: 5112
    • 57b Matsumi N. Naka K. Chujo Y. J. Am. Chem. Soc. 1998; 120: 10776
    • 57c Li H. Jäkle F. Angew. Chem. Int. Ed. 2009; 48: 2313
    • 57d Yoshii R. Hirose A. Tanaka K. Chujo Y. J. Am. Chem. Soc. 2014; 136: 18131
    • 57e Sengupta A. Doshi A. Jäkle F. Peetz R. J. Polym. Sci., Part A: Polym. Chem. 2015; 53: 1707
    • 57f Adams IA. Rupar PA. Macromol. Rapid Commun. 2015; 36: 1336
    • 57g Reus C. Guo F. John A. Winhold M. Lerner H.-W. Jäkle F. Wagner M. Macromolecules 2014; 47: 3727
  • 58 Yin X. Guo F. Lalancette RA. Jäkle F. Macromolecules 2016; 49: 537
  • 59 Hu K. Zhang Z. Burke J. Qin Y. J. Am. Chem. Soc. 2017; 139: 11004
  • 60 Nagai A. Murakami T. Nagata Y. Kokado K. Chujo Y. Macromolecules 2009; 42: 7217
    • 61a Smith PP. K. Buseck PR. Science 1982; 216: 984
    • 61b Kavan L. Chem. Rev. 1997; 97: 3061
    • 61c Carbyne and Carbynoid Structures, . Heimann RB. Evsyukov SE. Kavan L. Kluwer; Boston: 1999
    • 61d Casari CS. Tommasini M. Tykwinski RR. Milani A. Nanoscale 2016; 8: 4414
    • 62a Heimann RB. Kleiman J. Salansky NM. Nature 1983; 306: 164
    • 62b Sorokin PB. Lee H. Antipina LY. Singh AK. Yakobson BI. Nano Lett. 2011; 11: 2660
    • 62c Liu M. Artyukhov VI. Lee H. Xu F. Yakobson BI. ACS Nano 2013; 7: 10075
    • 63a Gibtner T. Hampel F. Gisselbrecht J.-P. Hirsch A. Chem. Eur. J. 2002; 8: 408
    • 63b Zheng Q. Gladysz JA. J. Am. Chem. Soc. 2005; 127: 10508
    • 63c Tykwinski RR. Chalifoux W. Eisler S. Lucotti A. Tommasini M. Fazzi D. Zoppo MD. Zerbi G. Pure Appl. Chem. 2010; 82: 891
    • 63d Weisbach N. Baranova Z. Gauthier S. Reibenspies JH. Gladysz JA. Chem. Commun. 2012; 48: 7562
    • 63e Chalifoux WA. Tykwinski RR. Nat. Chem. 2010; 2: 967
    • 64a Januszewski JA. Tykwinski RR. Chem. Soc. Rev. 2014; 43: 3184
    • 64b Januszewski JA. Wendinger D. Methfessel CD. Hampel F. Tykwinski RR. Angew. Chem. Int. Ed. 2013; 52: 1817
    • 65a Walatka VV. Jr. Labes MM. Phys. Rev. Lett. 1973; 31: 1139
    • 65b Zunger A. J. Chem. Phys. 1975; 63: 4854
    • 65c Merkel C. Ladik J. Phys. Lett. A 1976; 56: 395
    • 65d Yamabe T. Tanaka K. Imamura A. Kato H. Fukui K. Bull. Chem. Soc. Jpn. 1977; 50: 798
  • 66 Swager TM. Macromolecules 2017; 50: 4867
  • 67 Boović I. Phys. Rev. B 1986; 33: 5956
  • 68 Tanaka K. Ueda K. Koike T. Ando M. Yamabe T. Phys. Rev. B 1985; 32: 4279