Synlett 2018; 29(06): 699-713
DOI: 10.1055/s-0036-1591922
account
© Georg Thieme Verlag Stuttgart · New York

The Hitchhiker’s Guide to Organophosphate Chemistry

Institute of Organic Chemistry, Albert-Ludwigs-University Freiburg, Albertstrasse 21, 79104, Freiburg, Germany   Email: henning.jessen@oc.uni-freiburg.de
› Author Affiliations
Our research is supported by the German Science Foundation (DFG, Grants JE 572/4-1 & Inst39/1056-1 FUGG), the Human Frontier ­Science Program Organization (HFSP, Grant RGP0025/2016), the Volkswagen Foundation (Experiment!), the Carl-Zeiss Foundation (Rückkehrprogramm GSO), the Swiss National Science Foundation (SNSF, PP00P2_157607), and the Chinese Scholarship Council.
Further Information

Publication History

Received: 20 December 2017

Accepted after revision: 11 January 2018

Publication Date:
09 February 2018 (online)


Abstract

Phosphate esters and anhydrides are abundant motifs in biologically important molecules. Their chemical synthesis, modification, and purification are still challenging tasks often restricted to specialized laboratories. The isolation and analytical characterization of novel highly charged (poly)phosphorylated natural products comes with many challenges but also opportunities. Understanding the in vivo function of such molecules is another central endeavor. More often than not, studies into the function of charged metabolites are hampered by insufficient cellular uptake and thus delivery technologies are in high demand. Overall, research in this field requires several complementary approaches. This account discusses selected examples of some emerging technologies in organophosphate chemistry, with a focus on recent achievements in the authors laboratory usually in the context of diverse collaborative efforts.

1 Prologue

2 Introduction

3 The Inositol Phosphates and Pyrophosphates

3.1 Novel Synthetic Approaches

3.2 Stereochemical Assignment

3.3 A Protecting Group Concept for Phosphates

3.4 Cellular Delivery

3.5 Selected Examples of New Biology

4 Nucleotides

4.1 Iterative Phosphorylation

4.2 Bidirectional Phosphorylation

5 Conclusion

6 Outlook

 
  • References

  • 1 Hoffmann R. Angew. Chem., Int. Ed. Engl. 1988; 27: 1593
  • 2 Dutta AK. Linden A. Zoppi L. Baldridge KK. Siegel JS. Angew. Chem. Int. Ed. 2015; 54: 10792
  • 3 Frost R. The Road Not Taken. 1916.
  • 4 Westheimer FH. Science 1987; 235: 1173
  • 5 Jessen HJ. Ahmed N. Hofer A. Org. Biomol. Chem. 2014; 12: 3526
  • 6 Kamerlin SC. L. Sharma PK. Prasad RB. Warshel A. Q. Rev. Biophys. 2013; 46: 1
  • 7 Irvine RF. Schell MJ. Nat. Rev. Mol. Cell Biol. 2001; 2: 327
  • 8 Kornberg A. Rao NN. Ault-Riche D. Annu. Rev. Biochem. 1999; 68: 89
  • 9 Rao NN. Liu S. Kornberg A. J. Bacteriol. 1998; 180: 2186
  • 10 Lonetti A. Szijgyarto Z. Bosch D. Loss O. Azevedo C. Saiardi A. J. Biol. Chem. 2011; 286: 31966
  • 11 Gu C. Nguyen HN. Ganini D. Chen Z. Jessen HJ. Gu Z. Wang H. Shears SB. Proc. Natl. Acad. Sci. U.S.A. 2017; 114: 11968
  • 12 Shears SB. J. Cell Physiol. 2017; 233: 1897
  • 13 Azevedo C. Saiardi A. Trends. Biochem. Sci. 2017; 42: 219
  • 14 Chakraborty A. Koldobskiy MA. Bello NT. Maxwell M. Potter JJ. Juluri KR. Maag D. Kim S. Huang AS. Dailey MJ. Saleh M. Snowman AM. Moran TH. Mezey E. Snyder SH. Cell 2010; 143: 897
  • 15 Wild R. Gerasimaite R. Jung JY. Truffault V. Pavlovic I. Schmidt A. Saiardi A. Jessen HJ. Poirier Y. Hothorn M. Mayer A. Science 2016; 352: 986
  • 16 Brown MR. Kornberg A. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 16085
  • 17 Wang HC. DeRose EF. London RE. Shears SB. Nat. Commun. 2014; 5: 4178
  • 18 Saiardi A. Life 2017; 7: 24
  • 19 Glennon MC. Shears SB. Biochem. J. 1993; 293: 583
  • 20 Shah A. Ganguli S. Sen J. Bhandari R. J. Indian Inst. Sci. 2017; 97: 23
  • 21 Ghoshal S. Zhu QZ. Asteian A. Lin H. Xu HF. Ernst G. Barrow JC. Xu BJ. Cameron MD. Kamenecka TM. Chakraborty A. Mol. Metab. 2016; 5: 903
  • 22 Shears SB. Biochem. Soc. Trans. 2016; 44: 191
  • 23 Kilari RS. Weaver JD. Shears SB. Safrany ST. FEBS Lett. 2013; 587: 3464
  • 24 Gu CF. Nguyen HN. Hofer A. Jessen HJ. Dai XM. Wang HC. Shears SB. J. Biol. Chem. 2017; 292: 4544
  • 25 Straube R. BioSystems 2017; 162: 215
  • 26 Pöhlmann J. Risse C. Seidel C. Pöhlmann T. Jakopec V. Walla E. Ramrath P. Takeshita N. Baumann S. Feldbrugge M. Fischer R. Fleig U. PLoS Genet. 2014; 10: e1004586
  • 27 Resnick AC. Snowman AM. Kang BN. Hurt KJ. Snyder SH. Saiardi A. Proc. Natl. Acad. Sci. U.S.A. 2005; 102: 12783
  • 28 Saiardi A. Bhandari R. Resnick AC. Snowman AM. Snyder SH. Science 2004; 306: 2101
  • 29 Brown NW. Marmelstein AM. Fiedler D. Chem. Soc. Rev. 2016; 45: 6311
  • 30 Falck JR. Reddy KK. Ye JH. Saady M. Mioskowski C. Shears SB. Tan Z. Safrany S. J. Am. Chem. Soc. 1995; 117: 12172
  • 31 Reddy KM. Reddy KK. Falck JR. Tetrahedron Lett. 1997; 38: 4951
  • 32 Zhang HL. Thompson J. Prestwich GD. Org. Lett. 2009; 11: 1551
  • 33 Albert C. Safrany ST. Bembenek ME. Reddy KM. Reddy KK. Falck JR. Brocker M. Shears SB. Mayr GW. Biochem. J. 1997; 327: 553
  • 34 Conway SJ. Gardiner J. Grove SJ. A. Johns MK. Lim ZY. Painter GF. Robinson DE. J. E. Schieber C. Thuring JW. Wong LS. M. Yin MX. Burgess AW. Catimel B. Hawkins PT. Ktistakis NT. Stephens LR. Holmes AB. Org. Biomol. Chem. 2010; 8: 66
  • 35 Capolicchio S. Thakor DT. Linden A. Jessen HJ. Angew. Chem. Int. Ed. 2013; 52: 6912
  • 36 Wu M. Chong LS. Capolicchio S. Jessen HJ. Resnick AC. Fiedler D. Angew. Chem. Int. Ed. 2014; 53: 7192
  • 37 Capolicchio S. Wang H. Thakor DT. Shears SB. Jessen HJ. Angew. Chem. Int. Ed. 2014; 53: 9508
  • 38 Gerasimaite R. Pavlovic I. Capolicchio S. Hofer A. Schmidt A. Jessen HJ. Mayer A. ACS Chem. Biol. 2017; 12: 648
  • 39 Pavlovic I. Thakor DT. Jessen HJ. Org. Biomol. Chem. 2016; 14: 5559
  • 40 Duss M. Capolicchio S. Linden A. Ahmed N. Jessen HJ. Bioorg. Med. Chem. 2015; 23: 2854
  • 41 Wang HC. Godage HY. Riley AM. Weaver JD. Shears SB. Potter BV. L. Chem. Biol. 2014; 21: 689
  • 42 Beaucage SL. Caruthers MH. Tetrahedron Lett. 1981; 22: 1859
  • 43 Laha D. Johnen P. Azevedo C. Dynowski M. Weiss M. Capolicchio S. Mao H. Iven T. Steenbergen M. Freyer M. Gaugler P. de Campos MK. Zheng N. Feussner I. Jessen HJ. Van Wees SC. Saiardi A. Schaaf G. Plant Cell 2015; 27: 1082
  • 44 Losito O. Szijgyarto Z. Resnick AC. Saiardi A. PloS One 2009; 4: e5580
  • 45 Durantie E. Huwiler S. Leroux JC. Castagner B. Org. Lett. 2016; 18: 3162
  • 46 Aiba T. Sato M. Umegaki D. Iwasaki T. Kambe N. Fukase K. Fujimoto Y. Org. Biomol. Chem. 2016; 14: 6672
  • 47 Aiba T. Suehara S. Choy SL. Maekawa Y. Lotter H. Murai T. Inuki S. Fukase K. Fujimoto Y. Chemistry 2017; 23: 8304
  • 48 Podeschwa MA. L. Plettenburg O. Altenbach HJ. Eur. J. Org. Chem. 2005; 3101
  • 49 Podeschwa MA. L. Plettenburg O. Altenbach HJ. Eur. J. Org. Chem. 2005; 3116
  • 50 Pettersen EF. Goddard TD. Huang CC. Couch GS. Greenblatt DM. Meng EC. Ferrin TE. J. Comput. Chem. 2004; 25: 1605
  • 51 Blüher D. Laha D. Thieme S. Hofer A. Eschen-Lippold L. Masch A. Balcke G. Pavlovic I. Nagel O. Schonsky A. Hinkelmann R. Wörner J. Parvin N. Greiner R. Weber S. Tissier A. Schutkowski M. Lee J. Jessen HJ. Schaaf G. Bonas U. Nat. Commun. 2017; 2159. DOI: 10.1038/s41467-41017-02195-41468;
  • 52 Konietzny U. Greiner R. Int. J. Food Sci. Tech. 2002; 37: 791
  • 53 Duchek J. Adams DR. Hudlicky T. Chem. Rev. 2011; 111: 4223
  • 54 Wenzel TJ. Chisholm CD. Chirality 2011; 23: 190
  • 55 Blondeau P. Segura M. Perez-Fernandez R. de Mendoza J. Chem. Soc. Rev. 2007; 36: 198
  • 56 Niikura K. Metzger A. Anslyn EV. J. Am. Chem. Soc. 1998; 120: 8533
  • 57 Jessen HJ. Schulz T. Balzarini J. Meier C. Angew. Chem. Int. Ed. 2008; 47: 8719
  • 58 Meier C. Jessen HJ. Schulz T. Weinschenk L. Pertenbreiter F. Balzarini J. Curr. Med. Chem. 2015; 22: 3933
  • 59 Wiemer AJ. Wiemer DF. Top Curr. Chem. 2015; 360: 115
  • 60 Draskovic P. Saiardi A. Bhandari R. Burton A. Ilc G. Kovacevic M. Snyder SH. Podobnik M. Chem. Biol. 2008; 15: 274
  • 61 Pavlovic I. Thakor DT. Vargas JR. McKinlay CJ. Hauke S. Anstaett P. Camuna RC. Bigler L. Gasser G. Schultz C. Wender PA. Jessen HJ. Nat. Commun. 2016; 7: 10622
  • 62 Pavlovic I. Thakor DT. Bigler L. Wilson MS. C. Laha D. Schaaf G. Saiardi A. Jessen HJ. Angew. Chem. Int. Ed. 2015; 54: 9622
  • 63 Gollnest T. de Oliveira TD. Rath A. Hauber I. Schols D. Balzarini J. Meier C. Angew. Chem. Int. Ed. 2016; 55: 5255
  • 64 Klan P. Solomek T. Bochet CG. Blanc A. Givens R. Rubina M. Popik V. Kostikov A. Wirz J. Chem. Rev. 2013; 113: 119
  • 65 Stanzl EG. Trantow BM. Vargas JR. Wender PA. Acc. Chem. Res. 2013; 46: 2944
  • 66 Shears SB. Mol. Pharmacol. 2009; 76: 236
  • 67 Wilson MS. C. Livermore TM. Saiardi A. Biochem. J. 2013; 452: 369
  • 68 Shears SB. J. Cell Physiol. 2018; 233: 1897
  • 69 Lonetti A. Szijgyarto Z. Bosch D. Loss O. Azevedo C. Saiardi A. J. Biol. Chem. 2011; 286: 31966
  • 70 Hothorn M. Neumann H. Lenherr ED. Wehner M. Rybin V. Hassa PO. Uttenweiler A. Reinhardt M. Schmidt A. Seiler J. Ladurner AG. Herrmann C. Scheffzek K. Mayer A. Science 2009; 324: 513
  • 71 Desfougeres Y. Gerasimaite R. Jessen HJ. Mayer A. J. Biol. Chem. 2016; 291: 22262
  • 72 Roy B. Depaix A. Perigaud C. Peyrottes S. Chem. Rev. 2016; 116: 7854
  • 73 Dutta AK. Captain I. Jessen HJ. Top. Curr. Chem. 2017; 375: 51
  • 74 Weinschenk L. Meier C. In Chemical Synthesis of Nucleoside Analogues . John Wiley and Sons; Hoboken NJ: 2013: 209
  • 75 Korhonen HJ. Conway LP. Hodgson DR. Curr. Opin Chem. Biol. 2014; 21: 63
  • 76 Hodgson DR. W. In Advances in Physical Organic Chemistry . Williams IH. Williams NH. Academic Press; New York: 2017. Vol. 51 187
  • 77 Kukhanova M. Li X. Chen SH. King I. Doyle T. Prusoff W. Cheng YC. Mol. Pharmacol. 1998; 53: 801
  • 78 Gold H. van Delft P. Meeuwenoord N. Codee JD. Filippov DV. Eggink G. Overkleeft HS. van der Marel GA. J. Org. Chem. 2008; 73: 9458
  • 79 Ahmadipour S. Miller GJ. Carbohydr. Res. 2017; 451: 95
  • 80 Kistemaker HA. Lameijer LN. Meeuwenoord NJ. Overkleeft HS. van der Marel GA. Filippov DV. Angew. Chem. Int. Ed. 2015; 54: 4915
  • 81 Cremosnik GS. Hofer A. Jessen HJ. Angew. Chem. Int. Ed. 2014; 53: 286
  • 82 Sau SP. Chaput JC. Org. Lett. 2017; 19: 4379
  • 83 Hofer A. Cremosnik GS. Muller AC. Giambruno R. Trefzer C. Superti-Furga G. Bennett KL. Jessen HJ. Chemistry 2015; 21: 10116
  • 84 Muller AC. Giambruno R. Weisser J. Majek P. Hofer A. Bigenzahn JW. Superti-Furga G. Jessen HJ. Bennett KL. Sci. Rep. 2016; 6: 28107
  • 85 Hofer A. Marques E. Kieliger N. Gatter SK. N. Jordi S. Ferrari E. Hofmann M. Fitzpatrick TB. Hottiger MO. Jessen HJ. Org. Lett. 2016; 18: 3222
  • 86 McLennan AG. Pharmacol. Ther. 2000; 87: 73
  • 87 Bochner BR. Lee PC. Wilson SW. Cutler CW. Ames BN. Cell 1984; 37: 225
  • 88 Hacker SM. Mortensen F. Scheffner M. Marx A. Angew. Chem. Int. Ed. 2014; 53: 10247
  • 89 Bettendorff L. Wirtzfeld B. Makarchikov AF. Mazzucchelli G. Frederich M. Gigliobianco T. Gangolf M. De Pauw E. Angenot L. Wins P. Nat. Chem. Biol. 2007; 3: 211
  • 90 Wongkongkatep J. Ojida A. Hamachi I. Top. Curr. Chem. 2017; 375: 30
  • 91 Jin Y. Molt RW. Blackburn GM. Top. Curr. Chem. 2017; 375: 36
  • 92 Wilson MS. C. Saiardi A. Top. Curr. Chem. 2017; 375: 14
  • 93 Borland K. Limbach PA. Top. Curr. Chem. 2017; 375: 33
  • 94 Ermert S. Marx A. Hacker SM. Top. Curr. Chem. 2017; 375: 28
  • 95 Marmelstein AM. Moreno J. Fiedler D. Top. Curr. Chem. 2017; 375: 22
  • 96 Warminski M. Sikorski PJ. Kowalska J. Jemielity J. Top. Curr. Chem. 2017; 375: 16
  • 97 Adams D. The Hitchhiker’s Guide to the Galaxy. 1979
  • 98 Castuma CE. Huang RP. Kornberg A. Reusch RN. J. Biol. Chem. 1995; 270: 12980
  • 99 Reusch RN. Biochemistry (Moscow) 2000; 65: 280