Synlett 2018; 29(06): 742-746
DOI: 10.1055/s-0036-1591845
cluster
© Georg Thieme Verlag Stuttgart · New York

Ni-Catalyzed Formal Carbonyl-Ene Reaction of Terminal Alkenes via Carbon Dioxide Insertion

Yasuyuki Mori
a   Molecular Engineering Institute, Kindai University, 11-6 Kayanomori Iizuka, Fukuoka 820-8555, Japan   Email: ymori@moleng.fuk.kindai.ac.jp
,
Chieko Shigeno
b   Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan   Email: masanari@nagasaki-u.ac.jp
,
Ying Luo
b   Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan   Email: masanari@nagasaki-u.ac.jp
,
Bun Chan
b   Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan   Email: masanari@nagasaki-u.ac.jp
,
Gen Onodera
b   Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan   Email: masanari@nagasaki-u.ac.jp
,
b   Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan   Email: masanari@nagasaki-u.ac.jp
› Author Affiliations
We gratefully acknowledge funding from the Grants-in-Aid for Scientific Research (B) (26288052) from the Ministry of Education, Culture, Sports and Technology (MEXT), Japan.
Further Information

Publication History

Received: 27 September 2017

Accepted after revision: 07 November 2017

Publication Date:
08 December 2017 (online)


Published as part of the Cluster C–C Activation

Abstract

Nickel catalyzes the multicomponent coupling reaction of terminal alkenes, carbon dioxide, and organoaluminum reagents, leading to the synthesis of homoallylic alcohols in moderate-to-good yields with excellent regio- and stereoselectivities.

Supporting Information

 
  • References and Notes

    • 1a Hoffmann HM. R. Angew. Chem., Int. Ed. Engl. 1969; 8: 556
    • 1b Snider BB. Acc. Chem. Res. 1980; 13: 426
    • 1c Salomon MF. Pardo MF. Salomon RG. J. Am. Chem. Soc. 1984; 106: 3797
    • 1d Mikami K. Shimizu M. Chem. Rev. 1992; 92: 1021
    • 1e Johnson JS. Evans DA. Acc. Chem. Res. 2000; 33: 325
    • 1f Clarke ML. France MB. Tetrahedron 2008; 64: 9003
    • 2a Salomon MF. Pardo SN. Salomon RG. J. Org. Chem. 1984; 49: 2446
    • 2b Nagai T. Kumadaki I. Miki T. Kobayashi Y. Tomizawa G. Chem. Pharm. Bull. 1986; 34: 1546
    • 2c Nagai T. Ando A. Miki T. Kumadaki I. Shiro M. Chem. Pharm. Bull. 1988; 36: 3237
    • 2d Nagai T. Ogawa K. Morita M. Koyama M. Ando A. Miki T. Kumadai I. Chem. Pharm. Bull. 1989; 37: 1751
    • 2e Nagai T. Nishioka G. Koyama M. Ando A. Miki T. Kumadai I. Chem. Pharm. Bull. 1991; 39: 233
    • 2f Gill GB. Idris MS. H. Kirollos KS. J. Chem. Soc., Perkin Trans. 1 1992; 1: 2355
    • 2g Nagai T. Nishioka G. Koyama M. Ando A. Miki T. Kumadai I. Chem. Pharm. Bull. 1992; 40: 593
    • 2h Achmatowicz O. Bialecka-Florjańczyk E. Tetrahedron 1996; 52: 8827
    • 2i Evans DA. Tregay SW. Burgey CS. Paras NA. Vojkonsky T. J. Am. Chem. Soc. 2000; 122: 7936
    • 2j Aikawa K. Kainuma S. Hatano M. Mikami K. Tetrahedron Lett. 2004; 45: 183
    • 2k Mikami K. Aikawa K. Kainuma S. Kawakami Y. Saito T. Sayo N. Kumobayashi H. Tetrahedron: Asymmetry 2004; 15: 3885
    • 2l Langneer M. Rémy P. Bolm C. Synlett 2005; 781
    • 2m Doherty S. Knight JG. Smyth CH. Harrington RW. Clegg W. J. Org. Chem. 2006; 71: 9751
    • 2n Doherty S. Knight JG. Smyth CH. Harrington RW. Clegg W. Organometallics 2007; 26: 5961
    • 2o Doherty S. Knight JG. Smyth CH. Harrington RW. Clegg W. Organometallics 2007; 26: 6453
    • 2p Zhao J.-F. Tjan T.-BW. Tan B.-H. Loh T.-P. Org. Lett. 2009; 11: 5714
    • 2q Zheng K. Yang Y. Zhao J. Yin C. Lin L. Liu X. Feng X. Chem. Eur. J. 2010; 16: 9969
  • 3 It has been reported carbonyl-ene reaction of disubstituted alkenes with acetone; see: Jackson AC. Goldman BE. Snider BB. J. Org. Chem. 1984; 49: 3988
  • 4 Carbon Dioxide as a Chemical Feedstock . Aresta M. Wiley-VCH; Weinheim: 2010
    • 5a Liu Q. Wu L. Jackstell R. Beller M. Nat. Commun. 2015; 6: 5933
    • 5b Tsuji Y. Fujihara T. Chem. Commun. 2012; 48: 9956
    • 5c Huang K. Sun C.-L. Shi Z.-J. Chem. Soc. Rev. 2011; 40: 2435
    • 5d Huguet N. Jevtovikj I. Gordillo A. Lejkwski ML. Lindner R. Bru M. Khalimon AY. Rominger F. Schunk SA. Hofmann P. Limbach M. Chem. Eur. J. 2014; 20: 16858
    • 5e Plessow PN. Schafer A. Limbach M. Hofmann P. Organometallics 2014; 33: 3657
    • 6a Molla RA. Iqubal MA. Ghosh K. Islam SM. Green Chem. 2016; 18: 4649
    • 6b Tani Y. Kuga K. Fujihara T. Terao J. Tsuji Y. Chem. Commun. 2015; 51: 13020
    • 6c Yu B. Zhao Y. Zhang H. Xu J. Hao L. Gao X. Liu Z. Chem. Commun. 2014; 50: 2330
    • 7a Modern Organonickel Chemistry . Tamaru Y. Wiley-VCH; Weinheim: 2005
    • 7b Tasker SZ. Standley EA. Jamison TF. Nature 2014; 509: 299
    • 7c Standley EA. Tasker SZ. Jensen KL. Jamison TF. Acc. Chem. Res. 2015; 48: 1503
    • 7d Kimura M. Tamaru Y. J. Top. Curr. Chem. 2007; 279: 173
    • 7e Montgomery J. Angew. Chem. Int. Ed. 2004; 43: 3890
    • 8a Mori Y. Kawabata T. Onodera G. Kimura M. Synthesis 2016; 48: 2385
    • 8b Mori Y. Onodera G. Kimura M. Chem. Lett. 2014; 43: 97
    • 8c Mori Y. Mori T. Onodera G. Kimura M. Synthesis 2014; 46: 2287
    • 8d Mori T. Akioka Y. Onodera G. Kimura M. Molecules 2014; 19: 9288
    • 8e Nakamura T. Mori T. Togawa M. Kimura M. Heterocycles 2012; 84: 339
    • 8f Kimura M. Togawa M. Tatsuyama Y. Matsufuji K. Tetrahedron Lett. 2009; 50: 3982
    • 8g Kimura M. Tatsuyama Y. Kojima K. Tamaru Y. Org. Lett. 2007; 9: 1871
    • 8h Kimura M. Kojima K. Tatsuyama Y. Tamaru Y. J. Am. Chem. Soc. 2006; 128: 6332
    • 8i Kimura M. Ezoe A. Mori M. Tamaru Y. J. Am. Chem. Soc. 2005; 127: 201
    • 8j Kimura M. Ezoe A. Mori M. Iwata K. Tamaru Y. J. Am. Chem. Soc. 2006; 128: 8559
    • 8k Kimura M. Fujimatsu H. Ezoe A. Shibata K. Shimizu M. Matsumoto S. Tamaru Y. Angew. Chem. Int. Ed. 1999; 38: 397
    • 8l Kimura M. Ezoe A. Shibata K. Tamaru Y. J. Am. Chem. Soc. 1998; 120: 4033
    • 9a Ng S.-S. Jamison TF. J. Am. Chem. Soc. 2005; 127: 14194
    • 9b Ho C.-Y. Ng S.-S. Jamison TF. J. Am. Chem. Soc. 2006; 128: 5362
    • 9c Ng S.-S. Ho C.-Y. Jamison TF. J. Am. Chem. Soc. 2006; 128: 11513
  • 10 An excess amount of Me3Al is required for the coupling reaction of allylbenzene and acetone. However, in the case of a catalytic amount of Me3Al, the desired reaction did not proceed. It seems that Me3Al serves as a promoter for regeneration of Ni(0) active species as well as Lewis acid for activation of acetone.
    • 11a Takimoto M. Hiraga Y. Sato Y. Mori M. Tetrahedron Lett. 1998; 39: 4543
    • 11b Sato Y. Saito N. Mori M. J. Org. Chem. 2002; 67: 9310
    • 11c Moragas T. Cornella J. Martin R. J. Am. Chem. Soc. 2014; 136: 17702
    • 12a Dible BR. Sigman MS. J. Am. Chem. Soc. 2003; 125: 872
    • 12b Novak A. Calhorda MJ. Costa PJ. Woodward S. Eur. J. Org. Chem. 2009; 898
    • 12c Lee W.-C. Wang C.-H. Lin Y.-H. Shin W.-C. Ong T.-G. Org. Lett. 2013; 15: 5358
    • 12d Bielinski EA. Dai W. Guard LM. Hazari N. Takase MK. Organometallics 2013; 32: 4025
  • 13 Acetone would be readily produced from a mixture of carbon dioxide and Me3Al. Thus the formed acetone in situ might be subsequently consumed via Ni-catalyzed oxidative cyclization with alkenes promoted by Me3Al. It has been reported that the reaction of trialkylaluminum reagents with carbon dioxide proceeds to provide the trialkylcarbinols through the ketones; see: Yur’ev VP. Kuchin AV. Tolstikov GA. Russ. Chem. Bull. 1974; 23: 817
  • 14 It has been reported Lewis acids promote the formation of oxanickelacycles from alkene and ketone in intramolecular manner; see: Hayashi Y. Hoshimoto Y. Kumar R. Ohashi M. Ogoshi S. Chem. Lett. 2017; 46: 1096
  • 15 β-Hydride elimination from oxanickelacyclopentane occurs selectively instead of methylation via reductive elimination in the presence of Me3Al; see: Ogoshi S. Ueta M. Arai T. Kurosawa H. J. Am. Chem. Soc. 2005; 127: 12810
  • 16 General Procedure for the Ni-Catalyzed Three-Component Coupling Reaction of Alkene, CO2, Organoaluminum Reagent (Table 1, Entry 4) The reaction was undertaken as follows: Into a carbon dioxide purged flask with Ni(cod)2 (13.8 mg, 0.05 mmol) and PCy3 (28.1 mg, 0.1 mmol) were introduced successively 1,4-dioxane (4 mL), allylbenzene (59.1 mg, 0.5 mmol), and Me3Al (1.5 mL of 1 M solution in n-hexane, 1.5 mmol) via syringe. The homogeneous mixture was stirred at 40 °C for 24 h, during which the reaction was monitored by TLC. Then the mixture was quenched by adding 2 N HCl (10 mL) and extracted with ethyl acetate three times. The combined organic extracts were washed with brine and then dried (MgSO4) and concentrated in vacuo. The residual oil was subjected to column chromatography over silica gel (hexane/ethyl acetate = 2:1, v/v) to give 3aa (64.3 mg, 0.36 mmol, 73%) as a pale yellow oil. (E)-2-Methyl-5-phenylpent-4-en-2-ol (3aa) TLC: Rf = 0.25 (hexane/ethyl acetate = 4:1, v/v). IR (neat): 3387 (m), 3059 (m), 2970 (s), 1599 (s), 1497 (m), 1377 (s), 1140 (s), 968 (s), 692 (s) cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.27 (s, 6 H), 1.54 (br, 1 H), 2.39 (d, J = 7.6 Hz, 2 H), 6.28 (dt, J = 15.9, 7.6 Hz, 1 H), 6.46 (d, J = 15.9 Hz, 1 H), 7.21 (t, J = 7.3 Hz, 1 H), 7.30 (t, J = 7.3 Hz, 2 H), 7.34 (d, J = 7.3 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 29.3, 47.4, 70.9, 125.7, 126.1, 127.2, 128.5, 133.6, 137.3. HRMS: m/z calcd for C12H16O: 176.1201; found: m/z (relative intensity) = 176.1203 (9) [M+], 118 (100). (E)-2-Methyldec-4-en-2-ol (3ha) Pale yellow oil; yield 46.0 mg (0.27 mmol, 54%); TLC: Rf = 0.50 (hexane/ethyl acetate = 4:1, v/v). IR (neat): 3361 (br), 2962 (s), 2927 (s), 2856 (m), 1497 (w), 1377 (w), 1151 (w), 972 (w) cm–1. 1H NMR (400 MHz, CDCl3): δ = 0.89 (t, J = 6.8 Hz, 3 H), 1.20 (s, 6 H), 1.26–1.41 (m, 6 H), 1.50 (br, 1 H), 2.03 (q, J = 7.3 Hz, 2 H), 2.16 (d, J = 6.8 Hz, 2 H), 5.46 (dt, J = 15.1, 7.3 Hz, 1 H), 5.53 (dt, J = 15.1, 6.8 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 14.0, 22.5, 29.0, 29.2, 31.4, 32.7, 47.0, 70.4, 125.2, 135.4. HRMS: m/z calcd for C11H22O: 170.1671; found: m/z (relative intensity) = 170.1668 (14) [M+], 155 (100).