Synthesis 2018; 50(15): 2930-2935
DOI: 10.1055/s-0036-1591583
special topic
© Georg Thieme Verlag Stuttgart · New York

Dimerization of Benzyl and Allyl Halides via Photoredox-Mediated Disproportionation of Organozinc Reagents

Vitalij V. Levin
a   N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
,
Daniil P. Agababyan
a   N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
b   D. Mendeleev University of Chemical Technology of Russia, Higher Chemical College, Miusskaya sq. 9, 125047 Moscow, Russian Federation   Email: adil25@mail.ru
,
Marina I. Struchkova
a   N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
,
a   N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
› Author Affiliations
This work was supported by the Russian Foundation for Basic Research (project 16-29-10661).
Further Information

Publication History

Received: 01 February 2018

Accepted after revision: 09 April 2018

Publication Date:
23 May 2018 (online)


Published as part of the Special Topic Modern Radical Methods and their Strategic Applications in Synthesis

Abstract

Benzyl and allyl halides undergo homocoupling when treated with zinc in the presence of a catalytic amount of a cationic iridium(III) complex under irradiation with 400 nm light-emitting diodes. The reaction proceeds through the intermediate formation of an organozinc reagent, which disproportionates to a free radical and elemental zinc under photoredox conditions.

 
  • References

    • 1a Knochel P. Singer RD. Chem. Rev. 1993; 93: 2117
    • 1b Dilman AD. Levin VV. Tetrahedron Lett. 2016; 57: 3986
    • 1c The Chemistry of Organozinc Compounds . Rappoport Z. Marek I. John Wiley & Sons; Chichester: 2006
    • 1d Knochel P. Millot N. Rodrigues AL. Org. React. (N.Y.) 2001; 58: 417
    • 1e Knochel P. Jones P. Organozinc Reagents: A Practical Approach . Oxford Medical Publications; Oxford: 1999
    • 1f Erdik E. Organozinc Reagents in Organic Synthesis . CRC Press; Boca Raton: 1996
    • 2a Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 2b Shaw MH. Twilton J. MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 2c Tucker JW. Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
    • 2d Schultz DM. Yoon TP. Science 2014; 343: 1239176
    • 3a Brooks AC. Basore K. Bernhard S. Inorg. Chem. 2013; 52: 5794
    • 3b Brooks AC. Basore K. Bernhard S. Chem. Commun. 2014; 50: 5196

      For photochemical homocoupling, see:
    • 4a Park G. Yi SY. Jung J. Cho EJ. You Y. Chem. Eur. J. 2016; 22: 17790
    • 4b Wiesner S. Walter P. Wagner A. Kaifer E. Himmel H.-J. Eur. J. Org. Chem. 2016; 5045

      Conventional metal-mediated homocoupling is well known, for selected examples, see:
    • 5a Inaba S.-i. Matsumoto H. Rieke RD. Tetrahedron Lett. 1982; 23: 4215
    • 5b Barrero AF. Herrador MM. Quiez del Moral JF. Arteaga P. Akssira M. El Hanbali F. Arteaga JF. Dieguez HR. Sanchez EM. J. Org. Chem. 2007; 72: 2251
    • 5c Egorov AM. Matyukhova SA. Anisimov AV. Appl. Organomet. Chem. 2005; 19: 605
    • 5d Aitken RA. Hodgson PK. G. Morrison JJ. Oyewale AO. J. Chem. Soc., Perkin Trans. 1 2002; 402
    • 5e Sato K. Inoue Y. Mori T. Sakaue A. Tarui A. Omote M. Kumadaki I. Ando A. Org. Lett. 2014; 16: 3756
    • 5f Liu Y. Xiao S. Qi Y. Du F. Chem. Asian J. 2017; 12: 673
    • 5g Cai Y. Qian X. Gosmini C. Adv. Synth. Catal. 2016; 358: 2427

      For oxidative homocoupling of benzyl organometallics, see:
    • 6a Zhu Y. Xiong T. Han W. Shi Y. Org. Lett. 2014; 16: 6144
    • 6b Lei A. Zhang X. Org. Lett. 2002; 4: 2285
    • 6c Hua S.-K. Hu Q.-P. Ren J. Zeng B.-B. Synthesis 2013; 45: 518
    • 6d Belter RK. J. Fluorine Chem. 2015; 175: 110

      For single electron oxidation of organoboron and organosilicon compounds under photoredox conditions, see:
    • 7a Tellis JC. Kelly CB. Primer DN. Jouffroy M. Patel NR. Molander GA. Acc. Chem. Res. 2016; 49: 1429
    • 7b Matsui JK. Lang SB. Heitz DR. Molander GA. ACS Catal. 2017; 2563
  • 8 Levin VV. Zemtsov AA. Struchkova MI. Dilman AD. Org. Lett. 2013; 15: 917
  • 9 Hatch LF. Patton TL. J. Am. Chem. Soc. 1954; 76: 2705
  • 10 Slinker JD. Gorodetsky AA. Lowry MS. Wang J. Parker S. Rohl R. Bernhard S. Malliaras GG. J. Am. Chem. Soc. 2004; 126: 2763
  • 11 Xie P. Xie Y. Qian B. Zhou H. Xia C. Huang H. J. Am. Chem. Soc. 2012; 134: 9902
  • 12 Quast H. Kees F. Chem. Ber. 1977; 110: 1780
  • 13 Ledoussal B. Gorgues A. Le Coq A. Tetrahedron 1987; 43: 5841
  • 14 Okazaki Y. Ando F. Koketsu J. Bull. Chem. Soc. Jpn. 2003; 76: 2155
  • 15 Baltus CB. Chuckowree IS. Press NJ. Day IJ. Coles SJ. Tizzard GJ. Spencer J. Tetrahedron Lett. 2013; 54: 1211
  • 16 Sahoo SK. Tetrahedron Lett. 2016; 57: 3476
  • 17 Alvarez LX. Kudrik EV. Sorokin AB. Chem. Eur. J. 2011; 17: 9298
  • 18 Tokuyasu T. Masuyama A. Nojima M. McCullough KJ. J. Org. Chem. 2000; 65: 1069
  • 19 Prementine GS. Tirrell DA. Macromolecules 1989; 22: 52