Synlett 2018; 29(01): 15-33
DOI: 10.1055/s-0036-1590981
account
© Georg Thieme Verlag Stuttgart · New York

Using Organic Synthesis and Chemical Analysis to Understand the Photochemistry of Spore Photoproduct and Other Pyrimidine Dimers

Lei Li
a   Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N. Blackford Street, LD 326, 46202 Indianapolis, USA
b   Department of Dermatology, Indiana University School of Medicine, 46202 Indianapolis, USA   Email: lilei@iupui.edu
› Author Affiliations
Further Information

Publication History

Received: 31 May 2017

Accepted after revision: 06 September 2017

Publication Date:
30 November 2017 (online)


Abstract

Pyrimidine dimerization is the dominant DNA photoreaction occurring in vitro and in vivo. Three types of dimers, cyclobutane pyrimidine dimers (CPDs), pyrimidine (6-4) pyrimidone photoproducts (6-4PPs), and the spore photoproduct (SP), are formed from the direct dimerization process; it is of significance to understand the photochemistry and photobiology of these dimers. Traditionally, pyrimidine dimerization was studied by using the natural pyrimidine residues thymine and cytosine, which share similar chemical structures and similar reactivity, making it sometimes less straightforward for one to identify the key pyrimidine residue that needs to be excited to trigger the photoreaction. We thus adopted synthetic chemistry to selectively modify the pyrimidine residues or to introduce pyrimidine analogs to the selected positions before UV irradiation is applied. By monitoring the subsequent outcomes from the photoreaction, we were able to gain unique mechanistic insights into the photochemistry of SP as well as of CPDs and 6-4PPs. Moreover, our approaches have resulted in several useful “tools” that can facilitate the understanding of lesion photobiology. Our results summarized in this account illustrate what organic synthesis/chemical analysis may allow us to achieve in future DNA lesion biology studies.

 1 Introduction

 2 Using the Deuterium Labeling Strategy to Understand SP Formation

 3 Using Microcrystals to Reveal the Reaction Intermediates in SP Formation

 4 Using a Phosphate Isostere to Understand the SP Structure

 5 Synthesis of SP Phosphoramidite and SP Structural Studies

 6 Using a Thymine Isostere to Understand CPD Formation

 7 Using a Thymine Isostere to Understand 6-4PP Photoreaction

 8 Understanding the Chemical Stability of SP

 9 Understanding the Chemical Stability of 6-4PP

10 Summary and Perspectives for Future Research

 
  • References

    • 1a Brash DE. Photochem. Photobiol. 2015; 91: 15
    • 1b Hodis E. Watson IR. Kryukov GV. Arold ST. Imielinski M. Theurillat J.-P. Nickerson E. Auclair D. Li L. Place C. DiCara D. Ramos AH. Lawrence MS. Cibulskis K. Sivachenko A. Voet D. Saksena G. Stransky N. Onofrio RC. Winckler W. Ardlie K. Wagle N. Wargo J. Chong K. Morton DL. Stemke-Hale K. Chen G. Noble M. Meyerson M. Ladbury JE. Davies MA. Gershenwald JE. Wagner SN. Hoon DS. B. Schadendorf D. Lander ES. Gabriel SB. Getz G. Garraway LA. Chin L. Cell 2012; 150: 251
  • 2 Ravanat JL. Douki T. Cadet J. J. Photochem. Photobiol. B 2001; 63: 88
  • 3 Cadet J. Vigny P. Photochemistry and the nucleic acids . In Bioorganic photochemistry . Vol. 1. Morrison H. Wiley-VCH; New York: 1990: 1
    • 4a Cadet J. Courdavault S. Ravanat JL. Douki T. Pure Appl. Chem. 2005; 77: 947
    • 4b Cadet J. Sage E. Douki T. Mutat. Res. Fund. Mol. Mech. Mut. 2005; 571: 3
  • 5 Cadet J. Grand A. Douki T. Solar UV radiation-induced DNA bipyrimidine photoproducts: formation and mechanistic insights . In Photoinduced Phenomena in Nucleic Acids II . Vol. 356. Barbatti M. Borin AC. Ullrich S. Springer International Publishing; 2015: 249-275
    • 6a Cadet J. Wagner JR. Cold Spring Harb. Perspect. Biol. 2013; 5: a012559
    • 6b Cadet J. Douki T. Gasparutto D. Ravanat J.-L. Mutat. Res. Fund. Mol. Mech. Mut. 2003; 531: 5
    • 6c Cadet J. Douki T. Ravanat JL. Free Radic. Biol. Med. 2010; 49: 9
  • 7 Douki T. Cadet J. Biochemistry 2001; 40: 2495
  • 8 Johns HE. Delbruck M. Rapaport SA. J. Mol. Biol. 1962; 4: 104
  • 9 Johns HE. Pearson ML. Helleiner CW. Leblanc JC. J. Mol. Biol. 1964; 9: 503
  • 10 Mouret S. Baudouin C. Charveron M. Favier A. Cadet J. Douki T. Proc. Natl. Acad. Sci. 2006; 103: 13765
  • 11 Markovitsi D. Photochem. Photobiol. 2016; 92: 45
  • 12 Premi S. Wallisch S. Mano CM. Weiner AB. Bacchiocchi A. Wakamatsu K. Bechara EJ. Halaban R. Douki T. Brash DE. Science 2015; 347: 842
    • 13a Douki T. Sage E. Photochem. Photobiol. Sci. 2016; 15: 24
    • 13b Taylor JS. Cohrs MP. J. Am. Chem. Soc. 1987; 109: 2834
  • 14 Meador JA. Baldwin AJ. Pakulski JD. Jeffrey WH. Mitchell DL. Douki T. Environ. Microbiol. 2014; 16: 1808
  • 15 Donnellan JE. Jr. Setlow RB. Science 1965; 149: 308
  • 16 Smith KC. Yoshikawa H. Photochem. Photobiol. 1966; 5: 777
  • 18 Desnous C. l. Guillaume D., Clivio P. 2010; 110: 1213
    • 19a Douki T. Setlow B. Setlow P. Photochem. Photobiol. Sci. 2005; 4: 591
    • 19b Douki T. Setlow B. Setlow P. Photochem. Photobiol. 2005; 81: 163
    • 19c Rebeil R. Nicholson WL. Proc. Natl. Acad. Sci. 2001; 98: 9038
    • 20a Chandor A. Berteau O. Douki T. Gasparutto D. Sanakis Y. Ollagnier-De-Choudens S. Atta M. Fontecave M. J. Biol. Chem. 2006; 281: 26922
    • 20b Buis J. Cheek J. Kalliri E. Broderick J. J. Biol. Chem. 2006; 281: 25994
    • 20c Pieck J. Hennecke U. Pierik A. Friedel M. Carell T. J. Biol. Chem. 2006; 281: 36317
  • 21 Setlow P. Li L. Photochem. Photobiol. 2015; 91: 1263
  • 22 Nicholson WL. Munakata N. Horneck G. Melosh HJ. Setlow P. Microbiol. Mol. Biol. Rev. 2000; 64: 548
  • 23 Varghese AJ. Wang SY. Science 1967; 156: 955
    • 24a Rebeil R. Sun Y. Chooback L. Pedraza-Reyes M. Kinsland C. Begley TP. Nicholson WL. J. Bacteriol. 1998; 180: 4879
    • 24b Fajardo-Cavazos P. Rebeil R. Nicholson W. Curr. Microbiol. 2005; 51: 331
    • 24c Chandor-Proust A. Berteau O. Douki T. Gasparutto D. Ollagnier-de-Choudens S. Fontecave M. Atta M. J. Biol. Chem. 2008; 283: 36361
    • 24d Chandra T. Silver SC. Zilinskas E. Shepard EM. Broderick WE. Broderick JB. J. Am. Chem. Soc. 2009; 131: 2420
    • 24e Ghose S. Hilmer JK. Bothner B. Broderick JB. FEBS Lett. 2014; 588: 3023
    • 24f Benjdia A. Heil K. Barends TR. M. Carell T. Schlichting I. Nucleic Acids Res. 2012; 40: 9308
    • 24g Benjdia A. Heil K. Winkler A. Carell T. Schlichting I. Chem. Commun. 2014; 50: 14201
  • 25 Cheek J. Broderick J. J. Am. Chem. Soc. 2002; 124: 2860
    • 26a Yang L. Adhikari J. Gross ML. Li L. Photochem. Photobiol. 2017; 93: 331
    • 26b Yang L. Nelson RS. Benjdia A. Lin G. Telser J. Stoll S. Schlichting I. Li L. Biochemistry 2013; 52: 3041
    • 26c Yang L. Lin G. Nelson RS. Jian Y. Telser J. Li L. Biochemistry 2012; 51: 7173
    • 26d Yang L. Lin G. Liu D. Dria KJ. Telser J. Li L. J. Am. Chem. Soc. 2011; 133: 10434
  • 27 Landgraf BJ. McCarthy EL. Booker SJ. Annu. Rev. Biochem. 2016; 85: 485
    • 28a Fajardo-Cavazos P. Salazar C. Nicholson WL. J. Bacteriol. 1993; 175: 1735
    • 28b Yang L. Li L. Front. Chem. 2017; 5: 14
  • 29 Yang L. Jian Y. Setlow P. Li L. DNA Repair 2017; 53: 31
  • 30 Li L. Biochim. Biophys. Acta 2012; 1824: 1264
  • 31 Lin G. Li L. Angew. Chem. Int. Ed. 2010; 49: 9926
  • 32 Lin G. Chen C.-H. Pink M. Pu J. Li L. Chem. Eur. J. 2011; 17: 9658
  • 33 Jian Y. Li L. J. Org. Chem. 2013; 78: 3021
  • 34 Singh I. Jian Y. Li L. Georgiadis MM. Acta Crystallogr. D 2014; 70: 752
  • 35 Liu D. Li L. RSC Adv. 2013; 3: 19545
  • 36 Liu D. Zhou Y. Pu J. Li L. Chem. Eur. J. 2012; 18: 7823
  • 37 Jian Y. Maximowitsch E. Liu D. Adhikari S. Li L. Domratcheva T. Chem. Eur. J. 2017; 23: 7526
  • 38 Mantel C. Chandor A. Gasparutto D. Douki T. Atta M. Fontecave M. Bayle PA. Mouesca JM. Bardet M. J. Am. Chem. Soc. 2008; 130: 16978
  • 39 Kim SJ. Lester C. Begley TP. J. Org. Chem. 1995; 60: 6256
  • 40 Varghese AJ. Biochem. Biophys. Res. Commun. 1970; 38: 484
  • 41 Douki T. Laporte G. Cadet J. Nucleic Acids Res. 2003; 31: 3134
  • 42 Ames DM. Lin G. Jian Y. Cadet J. Li L. J. Org. Chem. 2014; 79: 4843
    • 43a Herak JN. McDowell CA. J. Magn. Reson. 1974; 16: 434
    • 43b Herak JN. J. Chem. Phys. 1970; 52: 6440
    • 43c Pruden B. Snipes W. Gordy W. Proc. Natl. Acad. Sci. 1965; 53: 917
    • 43d Shaw AA. Cadet J. J. Chem. Soc., Perkin Trans. 2 1990; 2063
  • 44 Young DW. Tollin P. Wilson HR. Acta Crystallogr. B 1969; 25: 1423
  • 45 Lee KS. Bumbaca D. Kosman J. Setlow P. Jedrzejas MJ. Proc. Natl. Acad. Sci. 2008; 105: 2806
  • 46 Jian Y. Ames DM. Ouyang H. Li L. Org. Lett. 2015; 17: 824
  • 47 Peiris S. Reaction Kinetics . In Static Compression of Energetic Materials . Peiris S. Piermarini G. Springer; Berlin Heidelberg: 2008: 203
  • 48 Hayes EC. Jian Y. Li L. Stoll S. J. Phys. Chem. B 2016; 120: 10923
    • 50a Matteucci M. Tetrahedron Lett. 1990; 31: 2385
    • 50b Gao X. Brown FK. Jeffs P. Bischofberger N. Lin KY. Pipe AJ. Noble SA. Biochemistry 1992; 31: 6228
    • 50c Jones RJ. Lin KY. Milligan JF. Wadwani S. Matteucci MD. J. Org. Chem. 1993; 58: 2983
    • 50d Rozners E. Strömberg R. J. Org. Chem. 1997; 62: 1846
  • 51 Butenandt J. Eker AP. M. Carell T. Chem. Eur. J. 1998; 4: 642
  • 52 Butenandt J. Epple R. Wallenborn E.-U. Eker AP. M. Gramlich V. Carell T. Chem. Eur. J. 2000; 6: 62
  • 53 Satou K. Komatsu Y. Torizawa T. Kato K. Shimada I. Nikaido O. Ohtsuka E. Tetrahedron Lett. 2000; 41: 2175
  • 54 Schreier WJ. Schrader TE. Koller FO. Gilch P. Crespo-Hernandez CE. Swaminathan VN. Carell T. Zinth W. Kohler B. Science 2007; 315: 625
    • 55a Slieman TA. Rebeil R. Nicholson WL. J. Bacteriol. 2000; 182: 6412
    • 55b Varghese AJ. Biochemistry 1970; 9: 4781
    • 55c Varghese AJ. Photochem. Photobiol. 1971; 13: 357
    • 56a Taylor J.-S. Brockie IR. Nucleic Acids Res. 1988; 16: 5123
    • 56b Taylor JS. Brockie IR. O’Day CL. J. Am. Chem. Soc. 1987; 109: 6735
    • 56c Ortiz Mayo JU. Thomas M. Saintomé C. Clivio P. Tetrahedron 2003; 59: 7377
    • 56d Friedel MG. Gierlich J. Carell T. Cyclobutane pyrimidine dimers as UV-induced DNA lesions . In The Chemistry of Cyclobutanes . John Wiley & Sons; Chichester: 2006: 1031
    • 56e Murata T. Iwai S. Ohtsuka E. Nucleic Acids Res. 1990; 18: 7279
    • 56f Tommasi S. Swiderski PM. Tu Y. Kaplan BE. Pfeifer GP. Biochemistry 1996; 35: 15693
    • 56g Kosmoski JV. Smerdon MJ. Biochemistry 1999; 38: 9485
    • 56h Butenandt J. Burgdorf LT. Carell T. Synthesis 1999; 1085
  • 57 Iwai S. Shimizu M. Kamiya H. Ohtsuka E. J. Am. Chem. Soc. 1996; 118: 7642
    • 58a Das D. Georgiadis MM. Structure 2004; 12: 819
    • 58b Goodwin KD. Long EC. Georgiadis MM. Nucleic Acids Res. 2005; 33: 4106
    • 58c Cote ML. Pflomm M. Georgiadis MM. J. Mol. Biol. 2003; 330: 57
    • 58d Cote ML. Yohannan SJ. Georgiadis MM. Acta Crystallogr. D 2000; 56: 1120
  • 59 Park H. Zhang K. Ren Y. Nadji S. Sinha N. Taylor J.-S. Kang C. Proc. Natl. Acad. Sci. 2002; 99: 15965
  • 60 Jong-Ki Kim R. Byong-Seok C. Eur. J. Biochem. 1995; 228: 849
  • 61 Muñoz-Sánchez J. Cabrera-Juárez E. Mutat. Res. Fund. Mol. Mech. Mut. 1991; 251: 21
    • 62a Schweitzer BA. Kool ET. J. Am. Chem. Soc. 1995; 117: 1863
    • 62b Guckian KM. Kool ET. Angew. Chem. Int. Ed. 1997; 36: 2825
  • 63 Kool ET. Sintim HO. Chem. Commun. 2006; 3665
    • 64a Moran S. Ren RX.-F. Kool ET. Proc. Natl. Acad. Sci. 1997; 94: 10506
    • 64b Moran S. Ren RX. F. Rumney S. Kool ET. J. Am. Chem. Soc. 1997; 119: 2056
    • 64c Kool ET. Annu. Rev. Biochem. 2002; 71: 191
    • 65a Ostrowski T. Maurizot J.-C. Adeline M.-T. Fourrey J.-L. Clivio P. J. Org. Chem. 2003; 68: 6502
    • 65b Moriou C. Thomas M. Adeline M.-T. Martin M.-T. Chiaroni A. Pochet S. Fourrey J.-L. Favre A. Clivio P. J. Org. Chem. 2007; 72: 43
    • 65c Desnous C. Babu BR. Moriou C. Mayo JU. O. Favre A. Wengel J. Clivio P. J. Am. Chem. Soc. 2008; 130: 30
  • 66 Callis PR. Annu. Rev. Phys. Chem. 1983; 34: 329
  • 67 Burrows CJ. Muller JG. Chem. Rev. 1998; 98: 1109
  • 68 Lin G. Jian Y. Dria KJ. Long EC. Li L. J. Am. Chem. Soc. 2014; 136: 12938
  • 69 Slieman TA. Nicholson WL. Appl. Environ. Microbiol. 2000; 66: 199
    • 70a Franklin WA. Lo KM. Haseltine WA. J. Biol. Chem. 1982; 257: 13535
    • 70b Lippke JA. Gordon LK. Brash DE. Haseltine WA. Proc. Natl. Acad. Sci. 1981; 78: 3388
    • 71a Yoon J.-H. Lee C.-S. O’Connor TR. Yasui A. Pfeifer GP. J. Mol. Biol. 2000; 299: 681
    • 71b Bourre F. Renault G. Sarasin A. Nucleic Acids Res. 1987; 15: 8861
  • 72 Arichi N. Inase A. Eto S. Mizukoshi T. Yamamoto J. Iwai S. Org. Biomol. Chem. 2012; 10: 2318
  • 73 Kan LS. Voituriez L. Cadet J. J. Photochem. Photobiol. B 1992; 12: 339
  • 74 Higurashi M. Ohtsuki T. Inase A. Kusumoto R. Masutani C. Hanaoka F. Iwai S. J. Biol. Chem. 2003; 278: 51968
  • 75 Lin G. Jian Y. Ouyang H. Li L. Org. Lett. 2014; 16: 5076
  • 76 Sancar A. Annu. Rev. Biochem. 1996; 65: 43
    • 77a Mori T. Matsunaga T. Hirose T. Nikaido O. Mutat. Res. 1988; 194: 263
    • 77b Mori T. Nakane M. Hattori T. Matsunaga T. Ihara M. Nikaido O. Photochem. Photobiol. 1991; 54: 225
    • 77c Strickland PT. Boyle JM. Photochem. Photobiol. 1981; 34: 595
    • 77d Strickland PT. Nikaido O. Matsunaga T. Boyle JM. Photochem. Photobiol. 1992; 55: 723
    • 78a Berton TR. Mitchell DL. Guo R. Johnson DG. Oncogene 2005; 24: 2449
    • 78b Schul W. Jans J. Rijksen YM. Klemann KH. Eker AP. de Wit J. Nikaido O. Nakajima S. Yasui A. Hoeijmakers JH. van der Horst GT. EMBO J 2002; 21: 4719
    • 78c Lange SS. Mitchell DL. Vasquez KM. Proc. Natl. Acad. Sci. 2008; 105: 10320
    • 78d Jans J. Schul W. Sert YG. Rijksen Y. Rebel H. Eker AP. Nakajima S. van Steeg H. de Gruijl FR. Yasui A. Hoeijmakers JH. van der Horst GT. Curr. Biol. 2005; 15: 105
    • 79a Mitchell DL. Nguyen TD. Cleaver JE. J. Biol. Chem. 1990; 265: 5353
    • 79b Ghosh R. Peng CH. Mitchell DL. Proc. Natl. Acad. Sci. 1996; 93: 6918
    • 79c Cleaver JE. Charles WC. McDowell ML. Sadinski WJ. Mitchell DL. Cancer Res. 1995; 55: 6152
    • 79d Mitchell DL. Cleaver JE. Lowery MP. Hewitt RR. Mutat. Res. 1995; 337: 161
    • 79e Cheung KJ. Jr. Mitchell D. Lin P. Li G. Cancer Res. 2001; 61: 4974
    • 79f Chouinard N. Therrien JP. Mitchell DL. Robert M. Drouin R. Rouabhia M. Biochem. Cell Biol. 2001; 79: 507
    • 79g Emmert S. Kobayashi N. Khan SG. Kraemer KH. Proc. Natl. Acad. Sci. 2000; 97: 2151
  • 80 Ding Y. Fleming AM. Burrows CJ. J. Am. Chem. Soc. 2017; 139: 2569