RSS-Feed abonnieren
DOI: 10.1055/s-0036-1590975
Asymmetric Synthesis of Pyrrolizidines, Indolizidines and Quinolizidines via a Double Reductive Cyclisation Protocol
Publikationsverlauf
Received: 13. Juni 2017
Accepted: 03. Juli 2017
Publikationsdatum:
08. August 2017 (online)
Dedicated to Professor Victor Snieckus on the occasion of his 80th birthday
Abstract
This account describes an overview of the asymmetric syntheses of pyrrolizidines, indolizidines and quinolizidines via a common double reductive cyclisation protocol. The highly diastereoselective conjugate addition of an enantiopure lithium amide to an α,β-unsaturated ester incorporating a terminal C=C bond installed the nitrogen-bearing stereogenic centre and was followed by enolate functionalisation to introduce the second olefinic functionality. Alternatively, conjugate addition to the corresponding α-alkenyl α,β-unsaturated ester followed by α-protonation of the intermediate enolate may also be used to access the cyclisation precursor. After oxidation of the two terminal olefinic units to give the corresponding dialdehyde, tandem hydrogenolysis/hydrogenation was employed to efficiently construct the azabicyclic core of each target molecule. This double reductive cyclisation strategy was successfully utilised in the syntheses of 13 azabicyclic alkaloids or closely related analogues.
1 Introduction
2 Asymmetric Syntheses of (–)-Isoretronecanol and (–)-Trachelanthamidine
3 Asymmetric Syntheses of (+)-Trachelanthamidine [(+)-Laburnine], (+)-Tashiromine and (+)-epi-Lupinine
4 Asymmetric Syntheses of (–)-Hastanecine, (–)-Turneforcidine and (–)-Platynecine
5 Asymmetric Syntheses of (–)-Macronecine, (–)-Petasinecine, (–)-1-epi-Macronecine, (+)-1-epi-Petasinecine and (+)-2-epi-Rosmarinecine
6 Conclusion
-
References
- 1 Usaki H. Toyo-oka M. Kanzaki H. Okuda T. Nitoda T. Bioorg. Med. Chem. 2009; 17: 7248
- 2 Hu X.-G. Bartholomew B. Nash RJ. Wilson FX. Fleet GW. J. Nakagawa S. Kato A. Jia Y.-M. van Well R. Yu C.-Y. Org. Lett. 2010; 12: 2562
- 3 Colegate SM. Dorling PR. Huxtable CR. Aust. J. Chem. 1979; 32: 2257
- 4 Dorling PR. Colegate SM. Huxtable CR. Toxicon 1983; 21: 93
- 5 Fitch RW. Garraffo HM. Spande TF. Yeh HJ. C. Daly JW. J. Nat. Prod. 2003; 66: 1345
- 6 Tranchelanthamidine was originally named tranchelantamidine, see: Men’shikov GP. Borodina GM. Zh. Obshch. Khim. 1945; 15: 225
- 7 Galinovsky F. Goldberger H. Pohm M. Monatsh. Chem. 1949; 80: 550
- 8 Men’shikov GP. Kuzovkov AD. Zh. Obshch. Khim. 1949; 19: 1702
- 9 Labenskii AS. Men’shikov GP. Zh. Obshch. Khim. 1948; 18: 1836
- 10 For example, see: Belakhdar G. Benjouad A. Kessabi M. Abdennebi EH. J. Mater. Environ. Sci. 2014; 3: 811
- 11 Pomeroy AR. Raper C. Eur. J. Pharm. 1971; 14: 374
- 12 Hoang LS. Tran MH. Lee JS. To DC. Nguyen VT. Kim JA. Lee JH. Woo MH. Min BS. Chem. Pharm. Bull. 2015; 63: 481
- 13 Ohimiya S. Kubo H. Otomasu H. Saito K. Murakoshi I. Heterocycles 1990; 30: 537
- 14 Sadykov A. Lazur’eveskii G. Zh. Obshch. Khim. 1943; 13: 319
- 15a Winterfeld K. Holschneider FW. Chem. Ber. 1931; 64: 137
- 15b Beck AB. Goldspink BH. Knox JR. J. Nat. Prod. 1979; 42: 385
- 16 For a review, see: Brambilla M. Davies SG. Fletcher AM. Thomson JE. Tetrahedron: Asymmetry 2014; 25: 387
- 17 Konovalov VS. Men’shikov GP. Zh. Obshch. Khim. 1945; 15: 328
- 18 Men’shikov GP. Denisova SO. Massagetov PS. Zh. Obshch. Khim. 1952; 22: 1465
- 19a Konovalova RA. Orekhov AP. Bull. Soc. Chim. Fr. 1937; 4: 2037
- 19b Culvenor CC. J. Kobetskaya NO. Smith LW. Utkin LM. Aust. J. Chem. 1968; 21: 1671
- 19c Asada Y. Furuya T. Chem. Pharm. Bull. 1984; 32: 475
- 20a Yamada K. Tatematsu H. Unno R. Hirata Y. Tetrahedron Lett. 1978; 46: 4543
- 20b Haberer W. Dobler S. Chemoecology 1999; 9: 169
- 21 Danilova A. Utkin L. Massagetov P. Zh. Obshch. Khim. 1955; 25: 831
- 22 De Waal HL. Nature 1940; 140: 777
- 23a Davies SG. Fletcher AM. Foster EM. Houlsby IT. T. Roberts PM. Schofield TM. Thomson JE. Chem. Commun. 2014; 50: 8309
- 23b Davies SG. Fletcher AM. Foster EM. Houlsby IT. T. Roberts PM. Schofield TM. Thomson JE. Org. Biomol. Chem. 2014; 12: 9223
- 23c Davies SG. Fletcher AM. Hughes DG. Lee JA. Price PD. Roberts PM. Russell AJ. Smith AD. Thomson JE. Williams OM. H. Tetrahedron 2011; 67: 9975
- 23d Davies SG. Hughes DG. Lee JA. Price PD. Roberts PM. Russell AJ. Smith AD. Thomson JE. Williams OM. H. Synlett 2010; 567
- 24a Cutter AC. Miller IR. Keily JF. Bellingham RK. Light ME. Brown RC. D. Org. Lett. 2011; 13: 3988
- 24b Janowitz A. Vavrecka M. Hesse M. Helv. Chim. Acta 1991; 74: 1352
- 24c Vavrecka M. Jonawitz A. Hesse M. Tetrahedron Lett. 1991; 32: 5543
- 24d O’Connell KM. Diaz-Gavilan M. Galloway WR. J. D. Spring DR. Beilstein J. Org. Chem. 2012; 8: 850
- 24e Airiau E. Spangenberg T. Girard N. Breit B. Mann A. Org. Lett. 2010; 12: 528
- 24f Gradnig G. Grassberger BV. Stütz AE. Tetrahedron Lett. 1991; 32: 4889
- 24g Kiss L. Forró E. Fülöp F. Beilstein J. Org. Chem. 2015; 11: 596
- 24h Barthelme A. Richards D. Mellor IR. Stockman RA. Chem. Commun. 2013; 49: 10507
- 24i Jones TH. Highet RJ. Don AW. Blum MS. J. Org. Chem. 1986; 51: 2712
- 24j Amorde SM. Jewett IT. Martin SF. Tetrahedron 2009; 65: 3222
- 25 We have previously reported the asymmetric synthesis of some 3,4-dihydroxyhomoprolines from the corresponding d-pentoses using N-debenzylation followed by in situ reductive cyclisation to form the pyrrolidine scaffold, see: Davies SG. Foster EM. Lee JA. Roberts PM. Thomson JE. Tetrahedron 2013; 69: 8680
- 26a Davies SG. Smith AD. Price PD. Tetrahedron: Asymmetry 2005; 16: 2833
- 26b Davies SG. Fletcher AM. Roberts PM. Thomson JE. Tetrahedron: Asymmetry 2012; 23: 1111
- 27 Brambilla M. Davies SG. Fletcher AM. Roberts PM. Thomson JE. Tetrahedron 2014; 70: 204
- 28a Davies SG. Walters IA. S. J. Chem. Soc., Perkin Trans. 1 1994; 1129
- 28b Davies SG. Foster EM. McIntosh CR. Roberts PM. Rosser TE. Smith AD. Thomson JE. Tetrahedron: Asymmetry 2011; 22: 1035
- 29a Aciro C. Claridge TD. W. Davies SG. Roberts PM. Russell AJ. Thomson JE. Org. Biomol. Chem. 2008; 6: 3751
- 29b Aciro C. Davies SG. Roberts PM. Russell AJ. Smith AD. Thomson JE. Org. Biomol. Chem. 2008; 6: 3762
- 29c Bond CW. Cresswell AJ. Davies SG. Kurosawa W. Lee JA. Fletcher AM. Roberts PM. Russell AJ. Smith AD. Thomson JE. J. Org. Chem. 2009; 74: 6735
- 29d Brennan MB. Claridge TD. W. Compton RG. Davies SG. Fletcher AM. Henstridge MC. Hewings DS. Kurosawa W. Lee JA. Roberts PM. Schoonen AK. Thomson JE. J. Org. Chem. 2012; 77: 7241
- 29e Brennan MB. Davies SG. Fletcher AM. Lee JA. Roberts PM. Russell AJ. Thomson JE. Aust. J. Chem. 2015; 68: 610
- 29f Brennan M. Csatayová K. Davies SG. Fletcher AM. Green WD. Lee JA. Roberts PM. Russell AJ. Thomson JE. J. Org. Chem. 2015; 80: 6609
- 30 Brambilla M. Davies SG. Fletcher AM. Roberts PM. Thomson JE. Tetrahedron 2016; 72: 7417
- 31 Claridge TD. W. Davies SG. Lee JA. Nicholson RL. Roberts PM. Russell AJ. Smith AD. Toms SM. Org. Lett. 2008; 10: 5437
- 32 Davies SG. Ichihara O. Walters IA. S. J. Chem. Soc., Perkin Trans. 1 1994; 1141
- 33 Wensheng Y. Mei Y. Kang Y. Hua Z. Jin Z. Org. Lett. 2004; 6: 3217
- 34 Brambilla M. Davies SG. Fletcher AM. Roberts PM. Thomson JE. Tetrahedron 2016; 72: 4523
- 35a Keck GE. Tarbet KH. Geraci LS. J. Am. Chem. Soc. 1993; 115: 8467
- 35b Keck GE. Welch DS. Vivian PK. Org. Lett. 2006; 8: 3667
- 35c Stambouli A. Amouroux M. Chastrette M. Tetrahedron Lett. 1987; 28: 5301
- 36 The analogous treatment of β-amino ester 57 with LDA followed by allyl bromide gave only returned 57.
- 37 Brambilla M. Davies SG. Fletcher AM. Roberts PM. Thomson JE. Tetrahedron 2016; 72: 7449
For example, see:
We have recently reported asymmetric syntheses of azabicyclic targets via stepwise ring-forming protocols, see:
For representative examples, see:
For reviews, see: