Synlett 2018; 29(01): 34-45
DOI: 10.1055/s-0036-1590916
account
© Georg Thieme Verlag Stuttgart · New York

Extension of the Modified Julia Olefination on Carboxylic Acid Derivatives: Scope and Applications

Laboratoire Chimie Organique 2 Glycochimie, Université de Lyon, ICBMS, UMR CNRS 5246, Bat. 308 – Curien (CPE Lyon), Université Claude Bernard Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne, France   Email: david.gueyrard@univ-lyon1.fr
› Author Affiliations
Further Information

Publication History

Received: 29 June 2017

Accepted after revision: 01 September 2017

Publication Date:
16 October 2017 (online)


Abstract

This account relates our work in the field of modified Julia olefination to extend this very useful olefination method to carboxylic acid derivatives. Since our preliminary results on lactones in 2005, the reaction has been extended to a large range of derivatives (lactams, imides and anhydrides) through an intra- or intermolecular process leading to a great variety of structures (enol ethers, enamides and exo enol esters). This article will also focus on the application of this methodology for the preparation of biologically interesting compounds and/or total syntheses of natural products such as C-disaccharide, bistramide A, jaspine B and maculalactone B.

1 Introduction

2 Modified Julia Olefination on Lactones

2.1 Methylene Enol Ether Synthesis

2.2 Substituted Enol Ether Synthesis

2.3 Monofluorinated Enol Ether Synthesis

2.4 Difluorinated Enol Ether Synthesis

3 Applications

3.1 Spiroketal Synthesis

3.2 Spirocompound Synthesis

3.3 Pseudodisaccharide Synthesis

3.4 Total Synthesis of Jaspine B

4 Modified Julia Olefination on Other Carboxylic Acid Derivatives

4.1 Lactam Olefination and Spiroaminal Synthesis

4.2 Bicyclic Enamide Synthesis by Intramolecular Modified Julia Olefination on Imides

4.3 Modified Julia Olefination on Anhydrides

5 Conclusion

 
  • References

  • 1 Kelly SE. Alkene Synthesis. , In Comprehensive Organic Synthesis. Vol. 1 Trost BM. Fleming I. Pergamon; Oxford: 1991: 729-817
  • 2 Wittig G. Geissler G. Liebigs Ann. Chem. 1953; 580: 44
  • 3 Maryanoff BE. Reitz AB. Chem. Rev. 1989; 89: 863
  • 4 Johnson CR. Shanklin JR. Kirchhoff RA. J. Am. Chem. Soc. 1973; 95: 6462
  • 5 van Staden LF. Gravstock D. Ager DJ. Chem. Soc. Rev. 2002; 31: 195
  • 6 Julia M. Paris J.-M. Tetrahedron Lett. 1973; 4833
  • 7 Markó IE. Pospíšil J. Julia, Julia–Kocienski, and Related Sulfur-Based Alkenations, In Science of Synthesis . Vol. 47a; de Meijere A. Georg Thieme Verlag; Stuttgart: 2010: 105
    • 8a Baudin JB. Hareau G. Julia SA. Ruel O. Tetrahedron Lett. 1991; 32: 1175
    • 8b Baudin JB. Hareau G. Julia SA. Ruel O. Bull. Soc. Chim. Fr. 1993; 130: 336
    • 8c Baudin JB. Hareau G. Julia SA. Loene R. Ruel O. Bull. Soc. Chim. Fr. 1993; 130: 856
  • 9 Blakemore PR. Cole WJ. Kocienski PJ. Morley A. Synlett 1998; 26

    • For reviews, see:
    • 10a Aïssa C. Eur. J. Org. Chem. 2009; 1831
    • 10b Blakemore PR. J. Chem. Soc., Perkin Trans. 1 2002; 2563
    • 10c Plesniak K. Zarecki A. Wicha J. Top. Curr. Chem. 2007; 275: 163
    • 10d Smith III AB. Dong S. Brenneman JB. Fox RJ. J. Am. Chem. Soc. 2009; 131: 12109

    • For a recent example of such a fragment union in the total synthesis of (+)-brefeldin A, see:
    • 10e Xiong Z. Hale KJ. Org. Lett. 2016; 18: 4254
    • 11a Alonso DA. Najera C. Varea M. Tetrahedron Lett. 2004; 45: 573
    • 11b Alonso DA. Fuensanta M. Nájera C. Varea M. J. Org. Chem. 2005; 70: 6404
    • 11c Alonso DA. Fuensanta M. Gomez-Bengoa E. Najera C. Eur. J. Org. Chem. 2008; 2915
  • 12 Mirk D. Grassot J.-M. Zhu J. Synlett 2006; 1255
  • 13 Pospíšil J. Markó IE. Org. Lett. 2006; 8: 5983
  • 14 Surprenant S. Chan WY. Berthelette C. Org. Lett. 2003; 5: 4851
  • 15 For example, see: Billard F. Robiette R. Pospíšil J. J. Org. Chem. 2012; 77: 6358
  • 16 Bonini C. Chiummiento L. Videtta V. Colobert F. Solladie G. Synlett 2006; 2427
  • 17 Blakemore PR. Ho DK. H. Nap WM. Org. Biomol. Chem. 2005; 3: 1365
  • 18 Lebrun M.-E. Le Marquand P. Berthelette C. J. Org. Chem. 2006; 71: 2009
  • 20 Gueyrard D. Haddoub R. Salem A. Bacar NS. Goekjian PG. Synlett 2005; 520
  • 21 Bourdon B. Corbet M. Fontaine P. Goekjian PG. Gueyrard D. Tetrahedron. Lett. 2008; 49: 747
  • 22 Habib S. Larnaud F. Pfund E. Lequeux T. Fenet B. Goekjian PG. Gueyrard D. Eur. J. Org. Chem. 2013; 1872
  • 23 Habib S. Larnaud F. Pfund E. Mena Barragan T. Lequeux T. Ortiz Mellet C. Goekjian PG. Gueyrard D. Org. Biomol. Chem. 2014; 12: 690
  • 24 Habib S. Gueyrard D. Eur. J. Org. Chem. 2015; 871
    • 25a Francke W. Kitching W. Curr. Org. Chem. 2001; 5: 233
    • 25b Aho JE. Pihko PM. Rissa TK. Chem. Rev. 2005; 105: 4406
    • 26a Perron F. Albizati KF. Chem. Rev. 1989; 89: 1617
    • 26b Mead KT. Brewer BN. Curr. Org. Chem. 2003; 7: 227

      For recent papers, see:
    • 27a Coric I. List B. Nature 2012; 483: 315
    • 27b Khomutnyk YY. Argüelles AJ. Winschel GA. Sun Z. Zimmerman PM. Nagorny P. J. Am. Chem. Soc. 2016; 138: 444
  • 28 Corbet M. Bourdon B. Gueyrard D. Goekjian PG. Tetrahedron Lett. 2008; 49: 750
  • 29 Tomas L. Bourdon B. Caille JC. Gueyrard D. Goekjian PG. Eur. J. Org. Chem. 2013; 915
  • 30 Huang H. Mao C. Jan ST. Uckun FM. Tetrahedron Lett. 2000; 41: 1699
  • 31 Uckun FM. Mao C. Vassilev AO. Huang H. Jan ST. Bioorg. Med. Chem. Lett. 2000; 10: 541
  • 32 Tengo J. Bergstrom G. Borg-Karlson AK. Groth I. Francke W. Z. Naturforsch. C. 1982; 37: 376
  • 33 Gouiffès D. Moreau S. Helbecque N. Bernier JL. Hénichart JP. Barbin Y. Laurent D. Verbist JF. Tetrahedron 1988; 44: 451
  • 34 Tomas L. Gueyrard D. Goekjian PG. Tetrahedron. Lett. 2010; 51: 4599
  • 35 Tomas L. Boije af Gennäs G. Hiebel MA. Hampson P. Gueyrard D. Pelotier B. Yli-Kauhaluoma J. Piva O. Lord JM. Goekjian PG. Chem. Eur. J. 2012; 18: 7452
  • 36 Rajanbabu TV. Reddy GS. J. Org. Chem. 1986; 51: 5458
  • 37 Colinas PA. Jäger V. Lieberknecht A. Bravo RD. Tetrahedron Lett. 2003; 44: 1071
  • 38 Li X. Takahashi H. Ohtake H. Ikegami S. Heterocycles 2003; 59: 547
  • 39 Benltifa M. Vidal S. Gueyrard D. Goekjian PG. Msaddek M. Praly JP. Tetrahedron Lett. 2006; 47: 6143
  • 40 Benltifa M. Hayes JM. Vidal S. Gueyrard D. Goekjian PG. Praly JP. Kizilis G. Tiraidis C. Alexacou KM. Chrysina ED. Zographos SE. Leonidas DD. Archontis G. Oikonomakos NG. Bioorg. Med. Chem. 2009; 17: 7368
  • 41 Goyard D. Telligmann SM. Goux-Henry C. Boysen MM. K. Framery E. Gueyrard D. Vidal S. Tetrahedron Lett. 2010; 51: 374
  • 42 Benltifa M. De Kiss M. Garcia-Moreno MI. Ortiz-Mellet C. Gueyrard D. Wadouachi A. Tetrahedron: Asymmetry 2009; 20: 1817
  • 43 Tite T. Tomas L. Docsa T. Gergely P. Kovensky J. Gueyrard D. Wadouachi A. Tetrahedron Lett. 2012; 53: 959
  • 44 Bull JA. Kunz H. Synthesis 2014; 46: 1185
  • 45 Kuroda I. Musman M. Ohtani II. Ichiba T. Tanaka J. Gravalos DG. Higa T. J. Nat. Prod. 2002; 65: 1505
  • 46 Santos C. Fabing I. Saffon N. Ballereau S. Genisson Y. Tetrahedron 2013; 69: 7227

    • For example, see:
    • 47a Gerasyuto A. Hsung RP. J. Org. Chem. 2007; 72: 2476
    • 47b Heretsch P. Rabe S. Giannis A. Org. Lett. 2009; 11: 5410
  • 48 Gigant III N. Habib S. Medoc M. Goekjian PG. Gueyrard D. Gillaizeau I. Eur. J. Org. Chem. 2014; 6501
    • 49a Salem SM. Kancharla P. Florova G. Gupta S. Lu W. Reynolds KA. J. Am. Chem. Soc. 2014; 136: 4565
    • 49b Wang XH. Dong SL. Yao ZL. Feng L. Daka P. Wang H. Xu ZH. Org. Lett. 2014; 16: 22
    • 49c Fujiwara Y. Kiyota N. Tsurushima K. Yoshitomi M. Horlad H. Ikeda T. Nohara T. Takeya M. Nagai R. J. Agric. Food Chem. 2012; 60: 2472
    • 49d Nicolaou KC. Murphy F. Barluenga S. Ohshima T. Wei H. Xu J. Gray DL. F. Baudoin O. J. Am. Chem. Soc. 2000; 122: 3830
    • 49e Greger H. Schinnerl J. Vajrodaya S. Brecker L. Hofer O. J. Nat. Prod. 2009; 72: 1708
    • 49f Sinibaldi M.-E. Canet I. Eur. J. Org. Chem. 2008; See also: 4391
  • 51 Trinh HV. Perrin L. Goekjian PG. Gueyrard D. Eur. J. Org. Chem. 2016; 2944
  • 52 Zamilpa A. Herrera-Ruiz M. Del Olmo E. López-Pérez JL. Tortoriello J. San Feliciano A. Bioorg. Med. Chem. Lett. 2005; 15: 3483
  • 53 Dewi RT. Tachibana S. Fajriah S. Hanafi M. Med. Chem. Res. 2015; 24: 737
  • 54 Daniels SB. Cooney E. Sofia MJ. Chakravarty PK. Katzenellenbogen JA. J. Biol. Chem. 1983; 258: 15046
    • 55a Massy-Westropp RA. Reynolds GD. Tetrahedron Lett. 1966; 18: 1939
    • 55b Gallo GG. Coronelli C. Vigevani A. Lancini GC. Tetrahedron 1969; 25: 5677
    • 55c Cimino G. De Stefano S. Minale L. Fattorusso E. Tetrahedron 1972; 28: 333
    • 55d Cafieri F. Fattorusso E. Santacroce C. Minale L. Tetrahedron 1972; 28: 1579
    • 55e Gold HJ. Wilson CW. J. Org. Chem. 1963; 28: 985
  • 56 Kelly TR. Bell SH. Ohashi N. Armstrong-Chong RJ. J. Am. Chem. Soc. 1988; 110: 6471
  • 57 Dussart N. Trinh HV. Gueyrard D. Org. Lett. 2016; 18: 4790
  • 58 Lee SC. Brown GD. J. Nat. Prod. 1998; 61: 29