Synlett 2017; 28(20): 2795-2799
DOI: 10.1055/s-0036-1590865
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Novel BTPhen-Functionalized Silica-Coated Magnetic Nanoparticles for Separating Trivalent Actinides and Lanthanides

a   Chemical Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6AD, UK   eMail: l.m.harwood@reading.ac.uk
,
Joseph Cowell
a   Chemical Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6AD, UK   eMail: l.m.harwood@reading.ac.uk
,
Petr Distler
b   Department of Nuclear Chemistry, Czech Technical University in Prague, Břehová 7, 11519 Prague 1, Czech Republic   eMail: jan.john@fjfi.cvut.cz
,
a   Chemical Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6AD, UK   eMail: l.m.harwood@reading.ac.uk
,
Jan John
b   Department of Nuclear Chemistry, Czech Technical University in Prague, Břehová 7, 11519 Prague 1, Czech Republic   eMail: jan.john@fjfi.cvut.cz
,
James Westwood
a   Chemical Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6AD, UK   eMail: l.m.harwood@reading.ac.uk
› Institutsangaben
The authors acknowledge the UK Engineering and Physical Sciences Research Council (grant No. EP/M026485/1) and the Grant Agency of the Czech Technical University in Prague (grant No. SGS15/216/OHK4/3T/14) for financial support (A.A. and P.D., respectively).
Weitere Informationen

Publikationsverlauf

Received: 05. Juni 2017

Accepted after revision: 13. Juli 2017

Publikationsdatum:
17. August 2017 (online)


Dedicated to Victor Snieckus, a valued friend and colleague, on the occasion of his 80th birthday

Abstract

Bis-(1,2,4-triazin-3-yl)-1,10-phenanthroline (BTPhen) functionalized magnetic nanoparticles (MNPs), which selectively extract Am(III) over europium(III) from 0.1 M HNO3 with fast kinetics and a separation factor of 30 have been synthesized. These MNPs also show a small but significant selectivity for Am(III) over Cm(III) with a separation factor of around 3 in 0.1 M HNO3. We report also the synthesis of these BTPhen and related ligands via an improved synthetic route bypassing the problematic benzylic oxidation with stoichiometric SeO2.

Supporting Information

 
  • References and Notes

  • 1 Kolarik Z. Chem. Rev. 2008; 108: 4208
  • 2 Panak PJ. Geist A. Chem. Rev. 2013; 113: 1199
  • 3 Veliscek-Carolan J. J. Hazard. Mater. 2016; 318: 266
  • 4 Hudson MJ. Harwood LM. Laventine DM. Lewis FW. Inorg. Chem. 2013; 52: 3414
  • 5 Sood DD. Patil SK. J. Radioanal. Nucl. Chem. 1996; 203: 547
  • 6 Bisson J. Dehaudt J. Charbonnel M.-C. Guillaneux D. Miguirditchian M. Marie C. Boubals N. Dutech G. Pipelier M. Blot V. Chem. Eur. J. 2014; 20: 7819
  • 7 Jensen MP. Chiarizia R. Ulicki JS. Spindler BD. Murphy DJ. Hossain MM. Roca-Sabio A. de Blas A. Rodríguez-Blas T. Solvent Extr. Ion Exch. 2015; 33: 329
  • 8 Xu L. Zhang A. Lu Y. Yang H. Liu Z. RSC Adv. 2016; 6: 99859
  • 9 Xiao C.-L. Wang C.-Z. Mei L. Zhang X.-R. Wall N. Zhao Y.-L. Chai Z.-F. Shi W.-Q. Dalton Trans. 2015; 44: 14376
  • 10 Huang Q.-R. Kingham JR. Kaltsoyannis N. Dalton Trans. 2015; 44: 2554
  • 11 Zhang A. Xu L. Lei G. New J. Chem. 2016; 40: 6374
  • 12 Whittaker DM. Griffiths TL. Helliwell M. Swinburne AN. Natrajan LS. Lewis FW. Harwood LM. Parry SA. Sharrad CA. Inorg. Chem. 2013; 52: 3429
  • 13 Coogan NT. Chimes MA. Raftery J. Mocilac P. Denecke MA. J. Org. Chem. 2015; 80: 8684
  • 14 Wagner C. Mullich U. Geist A. Panak PJ. Dalton Trans. 2015; 44: 17143
  • 15 Bremer A. Whittaker DM. Sharrad CA. Geist A. Panak PJ. Dalton Trans. 2014; 43: 2684
  • 16 Beele BB. Skerencak-Frech A. Stein A. Trumm M. Wilden A. Lange S. Modolo G. Mullich U. Schimmelpfennig B. Geist A. New J. Chem. 2016; 40: 10389
  • 17 Afsar A. Distler P. Harwood LM. John J. Westwood J. J. Org. Chem. 2016; 81: 10517
  • 18 Afsar A. Laventine DM. Harwood LM. Hudson MJ. Geist A. Chem. Commun. 2013; 49: 8534
  • 19 Magnusson D. Christiansen B. Foreman MR. S. Geist A. Glatz J.-P. Malmbeck R. Modolo G. Serrano-Purroy D. Sorel C. Solvent Extr. Ion Exch. 2009; 27: 97
  • 20 Lewis FW. Harwood LM. Hudson MJ. Geist A. Kozhevnikov VN. Distler P. John J. Chem. Sci. 2015; 6: 4812
  • 21 Lewis FW. Harwood LM. Hudson MJ. Drew MG. B. Wilden A. Sypula M. Modolo G. Vu T.-H. Simonin J.-P. Vidick G. Procedia Chem. 2012; 7: 231
  • 22 Kaur M. Zhang H. Martin L. Todd T. Qiang Y. Environ. Sci. Technol. 2013; 47: 11942
  • 23 Shusterman JA. Mason HE. Bowers J. Bruchet A. Uribe EC. Kersting AB. Nitsche H. ACS Appl. Mater. Interfaces 2015; 7: 20591
  • 24 Kameník J. Šebesta F. John J. Böhmer V. Rudzevich V. Grüner B. J. Radioanal. Nucl. Chem. 2015; 304: 313
  • 25 Liu R. Wei Y. Xu Y. Usuda S. Kim S. Yamazaki H. Ishii K. J. Radioanal. Nucl. Chem. 2012; 292: 537
  • 26 Ning S. Zou Q. Wang X. Liu R. Wei Y. Zhao Y. Ding Y. J. Radioanal. Nucl. Chem. 2016; 307: 993
  • 27 Higginson MA. Marsden OJ. Thompson P. Livens FR. Heath SL. React. Funct. Polym. 2015; 91: 93
  • 28 Veliscek-Carolan J. Jolliffe KA. Hanley TL. Chem. Commun. 2015; 51: 11433
  • 29 Chen XT. He LF. Liu RZ. Zhang C. Liu B. Tang YP. RSC Adv. 2015; 5: 56658
  • 30 Afsar A. Harwood LM. Hudson MJ. Distler P. John J. Chem. Commun. 2014; 50: 15082
  • 31 Afsar A. Distler P. Harwood LM. John J. Westwood J. Chem. Commun. 2017; 53: 4010
  • 32 Laventine DM. Afsar A. Hudson MJ. Harwood LM. Heterocycles 2012; 86: 1419
  • 33 Higginson MA. Kyle ND. Marsden OJ. Thompson P. Livens FR. Heath SL. Dalton Trans. 2015; 44: 16547
  • 34 Wu H. Wu Q.-Y. Wang C.-Z. Lan J.-H. Liu Z.-R. Chai Z.-F. Shi W.-Q. Dalton Trans. 2016; 45: 8107
  • 35 Tai S. Williams NJ. Carrick JD. J. Heterocycl. Chem. 2016; 53: 307
  • 36 Williams NJ. Dehaudt J. Bryantsev VS. Luo H. Abney CW. Dai S. Chem. Commun. 2017; 53: 2744
  • 37 Edwards AC. Wagner C. Geist A. Burton NA. Sharrad CA. Adams RW. Pritchard RG. Panak PJ. Whitehead RC. Harwood LM. Dalton Trans. 2016; 45: 18102
  • 38 Synthesis of BTPhen 10 To a suspension of 1,10-phenanthroline-2,9-dicarbohydrazon­amide (8, 0.60 g, 2 mmol) in THF (100 mL) and MeOH (100 mL) was added 4,4′-dihydroxybenzil (9, 1.10 g, 4.6 mmol, 2.3 equiv). Et3N (50 mL, 356.2 mmol) was added, and the mixture was heated at 81 °C for 3 d. The solution was allowed to cool to r.t., filtered, and the remaining solid residue washed with CH2Cl2 (25 mL). The filtrate was evaporated, and the solid was triturated with MeOH (100 mL). The insoluble solid was filtered, washed with further MeOH (50 mL) and Et2O (50 mL), and allowed to dry in air to afford the ligand 10 as a yellow solid (0.99 g, 69%); mp 280–282 °C (decomposed). 1H NMR (400 MHz, DMSO-d 6): δ = 6.78–6.93 (m, 8 H), 7.51–7.71 (m, 8 H), 8.11 (s, 2 H), 8.58 (d, J = 8.0 Hz, 2 H), 8.61 (d, J = 8.0 Hz, 2 H). 13C NMR (101 MHz, DMSO-d 6): δ = 115.4, 122.9, 125.5, 126.1, 127.7, 129.5, 130.7, 131.6, 137.7, 145.5, 152.6, 154.6, 155.3, 159.0, 159.6, 160.5. FTMS + P ESI: m/z calcd for C42H27O4N8 [M + H]+: 707.2150; found: 707.2153. IR: νmax = 3206, 1608, 1590, 1483, 1442 cm–1.