Synthesis 2017; 49(18): 4124-4132
DOI: 10.1055/s-0036-1590855
feature
© Georg Thieme Verlag Stuttgart · New York

Vinylation of Iododifluoromethylated Alcohols via a Light-Promoted Intramolecular Atom-Transfer Reaction

Liubov I. Panferova
N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation   Email: adil25@mail.ru
,
Marina I. Struchkova
N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation   Email: adil25@mail.ru
,
N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation   Email: adil25@mail.ru
› Author Affiliations
This work was supported by the Russian Science Foundation (project 17-13-01041).
Further Information

Publication History

Received: 16 May 2017

Accepted after revision: 06 July 2017

Publication Date:
07 August 2017 (online)


Abstract

A method for the synthesis of gem-difluorohomoallylic alcohols by the substitution of iodine in the iododifluoromethyl group by a vinyl fragment is described. The reaction proceeds via an intramolecular iodine atom transfer followed by β-elimination. The reaction is performed in the presence of an iridium photocatalyst, fac-Ir(ppy)3, and triphenylphosphine under irradiation with light-emitting diodes.

Supporting Information

 
  • References

    • 1a Liang T. Neumann CN. Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 1b Modern Synthesis Processes and Reactivity of Fluorinated Compounds . Groult H. Leroux FR. Tressaud A. Elsevier; Amsterdam: 2017
    • 1c For a special issue of Chemical Reviews devoted to fluorine chemistry, see: Chem. Rev. 2015; 115: 563
    • 2a Müller K. Faeh C. Diederich F. Science 2007; 317: 1881
    • 2b Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2c Kirk KL. Org. Process Res. Dev. 2008; 12: 305
    • 2d Wang J. Sanchez-Roselló M. Aceña JL. del Pozo C. Sorochinsky AE. Fustero S. Soloshonok VA. Liu H. Chem. Rev. 2014; 114: 2432
    • 2e Zhou Y. Wang J. Gu Z. Wang S. Zhu W. Aceña JL. Soloshonok VA. Izawa K. Liu H. Chem. Rev. 2016; 116: 422
    • 2f Fluorine in Medicinal Chemistry and Chemical Biology. Ojima I. John Wiley & Sons; Chichester: 2009
    • 2g Bégué J.-P. Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . Wiley-VCH; Weinheim: 2008
    • 3a Kirsch P. Modern Fluoroorganic Chemistry . Wiley-VCH; Weinheim: 2004
    • 3b Babudri F. Farinola GM. Naso F. Ragni R. Chem. Commun. 2007; 1003
    • 3c Hird M. Chem. Soc. Rev. 2007; 36: 2070
    • 4a Prakash GK. S. Yudin AK. Chem. Rev. 1997; 97: 757
    • 4b Ma J.-A. Cahard D. J. Fluorine Chem. 2007; 128: 975
    • 4c Shimizu M. Hiyama T. Angew. Chem. Int. Ed. 2005; 44: 214
    • 4d Dilman AD. Levin VV. Mendeleev Commun. 2015; 25: 239
    • 4e Uneyama K. Organofluorine Chemistry . Blackwell; Oxford: 2006
    • 4f Chemistry of Organic Fluorine Compounds II: A Critical Review, ACS Monograph Series 187. Hudlicky M. Pavlath AE. American Chemical Society; Washington D.C.: 1995
    • 5a Liu T. Shen Q. Eur. J. Org. Chem. 2012; 6679
    • 5b Wang H. Vicic DA. Synlett 2013; 24: 1887
    • 5c Chu L. Qing F.-L. Acc. Chem. Res. 2014; 47: 1513
    • 5d Tomashenko OA. Grushin VV. Chem. Rev. 2011; 111: 4475
  • 6 Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
    • 7a Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 7b Shaw MH. Twilton J. MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 8a Koike T. Akita M. Acc. Chem. Res. 2016; 49: 1937
    • 8b Chatterjee T. Iqbal N. You Y. Cho EJ. Acc. Chem. Res. 2016; 49: 2284
    • 8c Koike T. Akita M. Top. Catal. 2014; 57: 967
    • 8d Barata-Vallejo S. Bonesi SM. Postigo A. Org. Biomol. Chem. 2015; 13: 11153
  • 9 Andrieux CP. Gelis L. Medebielle M. Pinson J. Saveant JM. J. Am. Chem. Soc. 1990; 112: 3509
  • 10 Zhang C. Org. Biomol. Chem. 2014; 12: 6580
  • 11 Charpentier J. Früh N. Togni A. Chem. Rev. 2015; 115: 650

    • For the generation of various fluorinated radicals from sulfur reagents, see:
    • 12a Nagib DA. MacMillan DW. C. Nature 2011; 480: 224
    • 12b Ji Y. Brueckl T. Baxter RD. Fujiwara Y. Seiple IB. Su S. Blackmond DG. Baran PS. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 14411
    • 12c Daniel M. Dagousset G. Diter P. Klein P.-A. Tuccio B. Goncalves A.-M. Masson G. Magnier E. Angew. Chem. Int. Ed. 2017; 56: 3997
    • 13a Zhou Q. Ruffoni A. Gianatassio R. Fujiwara Y. Sella E. Shabat D. Baran PS. Angew. Chem. Int. Ed. 2013; 52: 3949
    • 13b Rong J. Deng L. Tan P. Ni C. Gu Y. Hu J. Angew. Chem. Int. Ed. 2016; 55: 2743
    • 14a Kosobokov MD. Levin VV. Struchkova MI. Dilman AD. Org. Lett. 2014; 16: 3784
    • 14b Tsymbal AV. Kosobokov MD. Levin VV. Struchkova MI. Dilman AD. J. Org. Chem. 2014; 79: 7831
    • 14c Levin VV. Smirnov VO. Struchkova MI. Dilman AD. J. Org. Chem. 2015; 80: 9349
    • 15a Levin VV. Trifonov AL. Zemtsov AA. Struchkova MI. Arkhipov DE. Dilman AD. Org. Lett. 2014; 16: 6256
    • 15b Trifonov AL. Zemtsov AA. Levin VV. Struchkova MI. Dilman AD. Org. Lett. 2016; 18: 3458
    • 16a Panferova LI. Tsymbal AV. Levin VV. Struchkova MI. Dilman AD. Org. Lett. 2016; 18: 996
    • 16b Panferova LI. Smirnov VO. Levin VV. Kokorekin VA. Struchkova MI. Dilman AD. J. Org. Chem. 2017; 82: 745

    • For recent work on light-mediated reactions from our group, see:
    • 16c Chernov GN. Levin VV. Kokorekin VA. Struchkova MI. Dilman AD. Adv. Synth. Catal. 2017; in press ; DOI: 10.1002/adsc.201700423
    • 16d Supranovich VI. Levin VV. Struchkova MI. Korlyukov AA. Dilman AD. Org. Lett. 2017; 19: 3215

      For alternative methods for the synthesis of the starting iododifluoromethyl-substituted alcohols 1, see:
    • 18a Miao W. Ni C. Zhao Y. Hu J. Org. Lett. 2016; 18: 2766
    • 18b Zhao Y. Gao B. Hu J. J. Am. Chem. Soc. 2012; 134: 5790

      For alternative methods for the synthesis of alcohols 3, see:
    • 19a Kirihara M. Takuwa T. Takizawa S. Momose T. Nemoto H. Tetrahedron 2000; 56: 8275
    • 19b Fujita M. Obayashi M. Hiyama T. Tetrahedron 1988; 44: 4135
    • 19c Ramachandran PV. Tafelska-Kaczmarek A. Chatterjee A. J. Org. Chem. 2012; 77: 9329
    • 20a Wallentin C.-J. Nguyen JD. Finkbeiner P. Stephenson CR. J. J. Am. Chem. Soc. 2012; 134: 8875
    • 20b Zhang C.-P. Chen Q.-Y. Guo Y. Xiao J.-C. Gu Y.-C. Chem. Soc. Rev. 2012; 41: 4536

      For recent reports on photoredox-mediated atom-transfer reactions, see:
    • 21a Tang X.-J. Dolbier WR. Angew. Chem. Int. Ed. 2015; 54: 4246
    • 21b Beniazza R. Atkinson R. Absalon C. Castet F. Denisov SA. McClenaghan ND. Lastécouères D. Vincent J.-M. Adv. Synth. Catal. 2016; 358: 2949
    • 21c Li G. Cao Y.-X. Luo C.-G. Su Y.-M. Li Y. Lan Q. Wang X.-S. Org. Lett. 2016; 18: 4806
    • 22a Beale TM. Chudzinski MG. Sarwar MG. Taylor MS. Chem. Soc. Rev. 2013; 42: 1667
    • 22b Cavallo G. Metrangolo P. Milani R. Pilati T. Priimagi A. Resnati G. Terraneo G. Chem. Rev. 2016; 116: 2478

      For the activation of halogen-bonded complexes with light, see:
    • 23a Sun X. Wang W. Li Y. Ma J. Yu S. Org. Lett. 2016; 18: 4638
    • 23b Wang Y. Wang J. Li G.-X. He G. Chen G. Org. Lett. 2017; 19: 1442
  • 24 Lambert JB. Zhao Y. Emblidge RW. Salvador LA. Liu XY. So JH. Chelius EC. Acc. Chem. Res. 1999; 32: 183
  • 25 Kosobokov MD. Dilman AD. Levin VV. Struchkova MI. J. Org. Chem. 2012; 77: 5850
  • 26 Zhang H. Lin J.-H. Xiao J.-C. Gu Y.-C. Org. Biomol. Chem. 2014; 12: 581
  • 27 Lin X. Qing F.-L. Org. Lett. 2013; 15: 4478
  • 28 Kirihara M. Kawasaki M. Katsumata H. Kakuda H. Shiro M. Kawabata S. Tetrahedron: Asymmetry 2002; 13: 2283
  • 29 Qing F.-L. Wan D.-P. Tetrahedron 1998; 54: 14189
  • 30 Audouard C. Fawcett J. Griffiths GA. Percy JM. Pintat S. Smith CA. Org. Biomol. Chem. 2004; 2: 528