Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(18): 4124-4132
DOI: 10.1055/s-0036-1590855
DOI: 10.1055/s-0036-1590855
feature
Vinylation of Iododifluoromethylated Alcohols via a Light-Promoted Intramolecular Atom-Transfer Reaction
This work was supported by the Russian Science Foundation (project 17-13-01041).Further Information
Publication History
Received: 16 May 2017
Accepted after revision: 06 July 2017
Publication Date:
07 August 2017 (online)
Abstract
A method for the synthesis of gem-difluorohomoallylic alcohols by the substitution of iodine in the iododifluoromethyl group by a vinyl fragment is described. The reaction proceeds via an intramolecular iodine atom transfer followed by β-elimination. The reaction is performed in the presence of an iridium photocatalyst, fac-Ir(ppy)3, and triphenylphosphine under irradiation with light-emitting diodes.
Key words
organofluorine compounds - photocatalysis - silicon reagents - radical reaction - atom transferSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1590855.
- Supporting Information
-
References
- 1a Liang T. Neumann CN. Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
- 1b Modern Synthesis Processes and Reactivity of Fluorinated Compounds . Groult H. Leroux FR. Tressaud A. Elsevier; Amsterdam: 2017
- 1c For a special issue of Chemical Reviews devoted to fluorine chemistry, see: Chem. Rev. 2015; 115: 563
- 2a Müller K. Faeh C. Diederich F. Science 2007; 317: 1881
- 2b Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 2c Kirk KL. Org. Process Res. Dev. 2008; 12: 305
- 2d Wang J. Sanchez-Roselló M. Aceña JL. del Pozo C. Sorochinsky AE. Fustero S. Soloshonok VA. Liu H. Chem. Rev. 2014; 114: 2432
- 2e Zhou Y. Wang J. Gu Z. Wang S. Zhu W. Aceña JL. Soloshonok VA. Izawa K. Liu H. Chem. Rev. 2016; 116: 422
- 2f Fluorine in Medicinal Chemistry and Chemical Biology. Ojima I. John Wiley & Sons; Chichester: 2009
- 2g Bégué J.-P. Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . Wiley-VCH; Weinheim: 2008
- 3a Kirsch P. Modern Fluoroorganic Chemistry . Wiley-VCH; Weinheim: 2004
- 3b Babudri F. Farinola GM. Naso F. Ragni R. Chem. Commun. 2007; 1003
- 3c Hird M. Chem. Soc. Rev. 2007; 36: 2070
- 4a Prakash GK. S. Yudin AK. Chem. Rev. 1997; 97: 757
- 4b Ma J.-A. Cahard D. J. Fluorine Chem. 2007; 128: 975
- 4c Shimizu M. Hiyama T. Angew. Chem. Int. Ed. 2005; 44: 214
- 4d Dilman AD. Levin VV. Mendeleev Commun. 2015; 25: 239
- 4e Uneyama K. Organofluorine Chemistry . Blackwell; Oxford: 2006
- 4f Chemistry of Organic Fluorine Compounds II: A Critical Review, ACS Monograph Series 187. Hudlicky M. Pavlath AE. American Chemical Society; Washington D.C.: 1995
- 5a Liu T. Shen Q. Eur. J. Org. Chem. 2012; 6679
- 5b Wang H. Vicic DA. Synlett 2013; 24: 1887
- 5c Chu L. Qing F.-L. Acc. Chem. Res. 2014; 47: 1513
- 5d Tomashenko OA. Grushin VV. Chem. Rev. 2011; 111: 4475
- 6 Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
- 7a Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 7b Shaw MH. Twilton J. MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 8a Koike T. Akita M. Acc. Chem. Res. 2016; 49: 1937
- 8b Chatterjee T. Iqbal N. You Y. Cho EJ. Acc. Chem. Res. 2016; 49: 2284
- 8c Koike T. Akita M. Top. Catal. 2014; 57: 967
- 8d Barata-Vallejo S. Bonesi SM. Postigo A. Org. Biomol. Chem. 2015; 13: 11153
- 9 Andrieux CP. Gelis L. Medebielle M. Pinson J. Saveant JM. J. Am. Chem. Soc. 1990; 112: 3509
- 10 Zhang C. Org. Biomol. Chem. 2014; 12: 6580
- 11 Charpentier J. Früh N. Togni A. Chem. Rev. 2015; 115: 650
- 12a Nagib DA. MacMillan DW. C. Nature 2011; 480: 224
- 12b Ji Y. Brueckl T. Baxter RD. Fujiwara Y. Seiple IB. Su S. Blackmond DG. Baran PS. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 14411
- 12c Daniel M. Dagousset G. Diter P. Klein P.-A. Tuccio B. Goncalves A.-M. Masson G. Magnier E. Angew. Chem. Int. Ed. 2017; 56: 3997
- 13a Zhou Q. Ruffoni A. Gianatassio R. Fujiwara Y. Sella E. Shabat D. Baran PS. Angew. Chem. Int. Ed. 2013; 52: 3949
- 13b Rong J. Deng L. Tan P. Ni C. Gu Y. Hu J. Angew. Chem. Int. Ed. 2016; 55: 2743
- 14a Kosobokov MD. Levin VV. Struchkova MI. Dilman AD. Org. Lett. 2014; 16: 3784
- 14b Tsymbal AV. Kosobokov MD. Levin VV. Struchkova MI. Dilman AD. J. Org. Chem. 2014; 79: 7831
- 14c Levin VV. Smirnov VO. Struchkova MI. Dilman AD. J. Org. Chem. 2015; 80: 9349
- 15a Levin VV. Trifonov AL. Zemtsov AA. Struchkova MI. Arkhipov DE. Dilman AD. Org. Lett. 2014; 16: 6256
- 15b Trifonov AL. Zemtsov AA. Levin VV. Struchkova MI. Dilman AD. Org. Lett. 2016; 18: 3458
- 16a Panferova LI. Tsymbal AV. Levin VV. Struchkova MI. Dilman AD. Org. Lett. 2016; 18: 996
- 16b Panferova LI. Smirnov VO. Levin VV. Kokorekin VA. Struchkova MI. Dilman AD. J. Org. Chem. 2017; 82: 745
- 16c Chernov GN. Levin VV. Kokorekin VA. Struchkova MI. Dilman AD. Adv. Synth. Catal. 2017; in press ; DOI: 10.1002/adsc.201700423
- 16d Supranovich VI. Levin VV. Struchkova MI. Korlyukov AA. Dilman AD. Org. Lett. 2017; 19: 3215
- 17a Bols M. Skrydstrup T. Chem. Rev. 1995; 95: 1253
- 17b Fensterbank L. Malacria M. Sieburth SM. Synthesis 1997; 813
- 18a Miao W. Ni C. Zhao Y. Hu J. Org. Lett. 2016; 18: 2766
- 18b Zhao Y. Gao B. Hu J. J. Am. Chem. Soc. 2012; 134: 5790
- 19a Kirihara M. Takuwa T. Takizawa S. Momose T. Nemoto H. Tetrahedron 2000; 56: 8275
- 19b Fujita M. Obayashi M. Hiyama T. Tetrahedron 1988; 44: 4135
- 19c Ramachandran PV. Tafelska-Kaczmarek A. Chatterjee A. J. Org. Chem. 2012; 77: 9329
- 20a Wallentin C.-J. Nguyen JD. Finkbeiner P. Stephenson CR. J. J. Am. Chem. Soc. 2012; 134: 8875
- 20b Zhang C.-P. Chen Q.-Y. Guo Y. Xiao J.-C. Gu Y.-C. Chem. Soc. Rev. 2012; 41: 4536
- 21a Tang X.-J. Dolbier WR. Angew. Chem. Int. Ed. 2015; 54: 4246
- 21b Beniazza R. Atkinson R. Absalon C. Castet F. Denisov SA. McClenaghan ND. Lastécouères D. Vincent J.-M. Adv. Synth. Catal. 2016; 358: 2949
- 21c Li G. Cao Y.-X. Luo C.-G. Su Y.-M. Li Y. Lan Q. Wang X.-S. Org. Lett. 2016; 18: 4806
- 22a Beale TM. Chudzinski MG. Sarwar MG. Taylor MS. Chem. Soc. Rev. 2013; 42: 1667
- 22b Cavallo G. Metrangolo P. Milani R. Pilati T. Priimagi A. Resnati G. Terraneo G. Chem. Rev. 2016; 116: 2478
- 23a Sun X. Wang W. Li Y. Ma J. Yu S. Org. Lett. 2016; 18: 4638
- 23b Wang Y. Wang J. Li G.-X. He G. Chen G. Org. Lett. 2017; 19: 1442
- 24 Lambert JB. Zhao Y. Emblidge RW. Salvador LA. Liu XY. So JH. Chelius EC. Acc. Chem. Res. 1999; 32: 183
- 25 Kosobokov MD. Dilman AD. Levin VV. Struchkova MI. J. Org. Chem. 2012; 77: 5850
- 26 Zhang H. Lin J.-H. Xiao J.-C. Gu Y.-C. Org. Biomol. Chem. 2014; 12: 581
- 27 Lin X. Qing F.-L. Org. Lett. 2013; 15: 4478
- 28 Kirihara M. Kawasaki M. Katsumata H. Kakuda H. Shiro M. Kawabata S. Tetrahedron: Asymmetry 2002; 13: 2283
- 29 Qing F.-L. Wan D.-P. Tetrahedron 1998; 54: 14189
- 30 Audouard C. Fawcett J. Griffiths GA. Percy JM. Pintat S. Smith CA. Org. Biomol. Chem. 2004; 2: 528
For the generation of various fluorinated radicals from sulfur reagents, see:
For recent work on light-mediated reactions from our group, see:
For alternative methods for the synthesis of the starting iododifluoromethyl-substituted alcohols 1, see:
For alternative methods for the synthesis of alcohols 3, see:
For recent reports on photoredox-mediated atom-transfer reactions, see:
For the activation of halogen-bonded complexes with light, see: