Synlett 2017; 28(14): 1753-1757
DOI: 10.1055/s-0036-1589092
cluster
© Georg Thieme Verlag Stuttgart · New York

A One-Pot Methodology for the Synthesis of the Yohimban Skeleton

Claudio Parra
,
Pablo Solís
Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain   Email: benbradshaw@ub.edu
,
Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain   Email: benbradshaw@ub.edu
,
Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII s/n, 08028-Barcelona, Spain   Email: benbradshaw@ub.edu
› Author Affiliations
Financial support for this research was provided by the Project CTQ2016-75350-P from the Ministry of Economy, Industry, and Competitiveness of Spain/FEDER funds. B.B. acknowledge the Serra Hunter programme (Generalitat de Catalunya)
Further Information

Publication History

Received: 01 June 2017

Accepted after revision: 11 July 2017

Publication Date:
15 August 2017 (online)


Published as part of the ISHC Conference Special Section

Abstract

A simple and straightforward assembly of the yohimban skeleton was achieved by condensation of an acyclic β-keto ester with tryptamine, followed by consecutive cross metathesis and tandem cyclization reactions, leading to the formation of three new rings. The whole process was readily carried out in the one-flask providing a rapid entry to the pentacyclic scaffold of yohimbine alkaloids.

Supporting Information

 
  • References and Notes

  • 1 Current address: Research Center of the Man in the Desert – CIHDE, Av. General Velásquez 1775, Arica, Chile.

    • For recent selected reviews on domino–tandem reactions, see:
    • 2a Grondal C. Jeanty M. Enders D. Nat. Chem. 2010; 2: 167
    • 2b Ambrosini LM. Lambert TH. ChemCatChem 2010; 2: 1373
    • 2c Marqués-López E. Herrera RP. Christmann M. Nat. Prod. Rep. 2010; 27: 1138
    • 2d Pellissier H. Chem. Rev. 2013; 113: 442
    • 2e Volla CM. R. Atodiresei I. Rueping M. Chem. Rev. 2014; 114: 2390
    • 2f Wang Y. Lu H. Xu P.-F. Acc. Chem. Res. 2015; 48: 1832
    • 2g Broja T. Fuchs PJ. W. Zeitler K. Nat. Chem. 2015; 7: 950
  • 3 Bradshaw B. Luque-Corredera C. Bonjoch J. Org. Lett. 2013; 15: 326
  • 4 Bradshaw B. Parra C. Bonjoch J. Org. Lett. 2013; 15: 2458
  • 5 Parra C. Bosch C. Gomez-Bengoa E. Bonjoch J. Bradshaw B. J. Org. Chem. 2016; 81: 10172
  • 6 Hayashi Y. Chem. Sci. 2016; 7: 866
  • 7 Bradshaw B. Luque-Corredera C. Bonjoch J. Chem. Commun. 2014; 50: 7099
  • 8 Lebold TP. Wood JL. Deitch J. Lodewyk MW. Tantillo DJ. Sarpong R. Nat. Chem. 2013; 5: 126 ; and references cited therein
  • 9 Kisakürek MV. Hesse M. In Indole and Biogenetically Related Alkaloids . Phillipson JD. Zenk MH. Academic Press; London: 1980: 11-26

    • For recent approaches to the tetracyclic ring of octahydroindolo[2,3-a]quinolizidine using organocatalysis, see:
    • 10a Franzén J. Fisher A. Angew. Chem. Int. Ed. 2009; 48: 787
    • 10b Zhang W. Franzén J. Adv. Synth. Catal. 2010; 352: 499
    • 10c Zhang W. Bah J. Wohlfarth A. Franzén J. Chem. Eur. J. 2011; 17: 13814
    • 10d Wu X. Dai X. Nie L. Fang H. Chen J. Ren Z. Cao W. Zhao G. Chem. Commun. 2010; 46: 2733
    • 10e Dai X. Wu X. Fang H. Nie L. Chen J. Deng H. Cao W. Zhao G. Tetrahedron 2011; 67: 3034
    • 10f Wu X. Dai X. Fang H. Nie L. Chen J. Cao W. Zhao G. Chem. Eur. J. 2011; 17: 10510
    • 10g Zhang W. Bah J. Wohlfarth A. Franzén J. Chem. Eur. J. 2011; 17: 13814
    • 10h Lin S. Deiana L. Tseggai A. Córdova A. Eur. J. Org. Chem. 2012; 398
    • 10i Muratore ME. Shi L. Pilling AW. Storer RI. Dixon DJ. Chem. Commun. 2012; 48: 6351
    • 10j Tan Y. Luan H.-L. Lin H. Sun X.-W. Yang X.-D. Dong H.-Q. Lin G.-Q. Chem. Commun. 2014; 50: 10027
    • 10k Li L. Aibibula P. Jia Q. Jia Y. Org. Lett. 2017; 19: 2642
    • 11a Mergott DJ. Zuend SJ. Jacobsen EN. Org. Lett. 2008; 10: 745
    • 11b Herlé B. Wanner MJ. Van Maarseveen JH. Hiemstra H. J. Org. Chem. 2011; 76: 8907
    • 12a Stöckigt J. Antonchick AP. Wu F. Waldmann H. Angew. Chem. Int. Ed. 2015; 50: 8538
    • 12b Wu P. Nielsen TE. Chem. Rev. 2017; 117: 7811
  • 13 Haddad N. Abramovich Z. J. Org. Chem. 1995; 60: 6883 ; The ester 2 could also be prepared in a two-step process by coupling 6-hexenoic acid to Meldrum’s acid followed by refluxing with t-BuOH
  • 14 Fustero S. Jiménez D. Pozo C. Sánchez-Roselló M. J. Am. Chem. Soc. 2007; 129: 6700
  • 15 Copper iodide acts as a phosphine scavenger, which enhances the rate of the reaction, and also as a stabilizer of the catalyst due to the iodine ion: Voigtritter K. Subir GhoraiS. Lipshutz BH. J. Org. Chem. 2011; 76: 4697
    • 16a Maryanoff BE. McComsey DF. Duhl-Emswiler BA. J. Org. Chem. 1983; 48: 5062
    • 16b Node M. Nagasawa H. Fuji K. J. Am. Chem. Soc. 1987; 109: 7901
    • 16c Lounasmaa M. Berner M. Tolvanen A. Heterocycles 1998; 48: 1275
    • 17a Wenkert E. Chang C.-J. Chawla HP. S. Cochran DW. Hagaman EW. King JC. Orito K. J. Am. Chem. Soc. 1976; 98: 3645
    • 17b Lounasmaa M. Tolvanen A. Heterocycles 1985; 23: 371
  • 18 The quantities of cyclized products 6 and 7 formed could be as much as 20–30% making the extensive solvent and catalyst screening required impractical.
  • 19 The initial coupling required dilute conditions to be effective. However, the subsequent cross-metathesis reaction only arrived to about 70–80% completion when run under these conditions. Furthermore, the acetyl chloride promoted α-acyliminium ion cyclization requires very concentrated conditions since the formation of 7 is favored by precipitation from the solution during the reaction.10c Using a dilute solution of 1,4-dioxane for the cyclization we found the ratio of compounds 7/6 dropped from 9:1 to just 2:1.