Synthesis 2017; 49(17): 4045-4054
DOI: 10.1055/s-0036-1589050
paper
© Georg Thieme Verlag Stuttgart · New York

Facile Access to Amido (Thio)xanthates under Eco-Friendly Conditions by One-Pot Three-Component Reaction (3-CR)

Max Franz
Institute of Chemistry, University of Oldenburg, Carl-von-Ossietzky-Str. 9–11, 26129 Oldenburg, Germany   Email: juergen.martens@uni-oldenburg.de
,
Timo Stalling
Institute of Chemistry, University of Oldenburg, Carl-von-Ossietzky-Str. 9–11, 26129 Oldenburg, Germany   Email: juergen.martens@uni-oldenburg.de
,
Raoul Schaper
Institute of Chemistry, University of Oldenburg, Carl-von-Ossietzky-Str. 9–11, 26129 Oldenburg, Germany   Email: juergen.martens@uni-oldenburg.de
,
Marc Schmidtmann
Institute of Chemistry, University of Oldenburg, Carl-von-Ossietzky-Str. 9–11, 26129 Oldenburg, Germany   Email: juergen.martens@uni-oldenburg.de
,
Jürgen Martens*
Institute of Chemistry, University of Oldenburg, Carl-von-Ossietzky-Str. 9–11, 26129 Oldenburg, Germany   Email: juergen.martens@uni-oldenburg.de
› Author Affiliations
Further Information

Publication History

Received: 06 April 2017

Accepted after revision: 15 May 2017

Publication Date:
25 July 2017 (online)


Abstract

A straightforward three-component reaction (3-CR) for the preparation of a variety of biologically interesting amido (thio)xanthates has been developed. By the proper choice of a potassium (thio)xanthate salt, a cyclic or acyclic imine, and an acyl chloride as substrates a broad scope with respect to the substituents can be realized. This operationally simple one-pot method proceeds under mild and environmentally friendly conditions while potassium chloride is produced as the single waste-product.

Supporting Information

 
  • References

  • 1 The term ‘xanthate’ also refers to the corresponding salt with the formula ROCS2 M+ (M = K, Na).
  • 2 Zeise WC. J. Chem. Phys. 1822; 35: 173
    • 3a Zinner H. Pinkert H. J. Prakt. Chem. 1975; 317: 379
    • 3b Güzel O. Salman A. Bioorg. Med. Chem. 2006; 14: 7804
    • 3c Adibhatla RM. Hatcher JF. Gusain A. Neurochem. Res. 2012; 37: 671
    • 3d Carta F. Akdemir A. Scozzafava A. Masini E. Supuran CT. J. Med. Chem. 2013; 56: 4691
  • 4 Zard SZ. Angew. Chem., Int. Ed. Engl. 1997; 36: 672
  • 5 Lokensgard E. Industrial Plastics: Theory and Application . Delmar; Clifton Park NY: 2010. Appendix
  • 6 Donaldson EM. Leaver ME. Talanta 1990; 37: 173
    • 7a Fackler JP. Jr. Seidel WC. Inorg. Chem. 1969; 8: 1631
    • 7b Nicholson T. Thornback J. O’Connell L. Morgan G. Davison A. Jones AG. Inorg. Chem. 1990; 29: 89
    • 8a Wan D. Satoh K. Kamigaito M. Okamoto Y. Macromolecules 2005; 38: 10397
    • 8b Mori H. Ookuma H. Nakano S. Endo T. Macromol. Chem. Phys. 2006; 207: 1005
    • 8c Wan D. Zhou Q. Pu H. Yang G. J. Polym. Sci., Part A: Polym. Chem. 2008; 46: 3756
    • 8d Nakabayashi K. Mori H. Eur. Polym. J. 2013; 49: 2808
    • 9a Udding JH. Giesselink JP. M. Hiemstra H. Speckamp WN. Bull. Soc. Chim. Belg. 1994; 103: 329
    • 9b Gagosz F. Zard SZ. Org. Lett. 2003; 5: 2655

      The N-acylation of imines is well known. For original efforts on this topic, see:
    • 10a James TC. Judd CW. J. Chem. Soc., Trans. 1914; 105: 1427
    • 10b Leuchs H. Wulkow G. Gerland H. Ber. Dtsch. Chem. Ges. 1932; 62: 1586
    • 11a Ugi I. J. Prakt. Chem. 1997; 339: 499
    • 11b Dömling A. Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
  • 12 Wender PA. Miller BL. Nature 2009; 460(7252): 197
  • 13 Cioc RC. Ruijter E. Orru RV. A. Green Chem. 2014; 16: 2958
  • 14 Ruijter E. Scheffelaar R. Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
    • 15a Ishikawa H. Suzuki T. Hayashi Y. Angew. Chem. Int. Ed. 2009; 48: 1304
    • 15b Wahba AE. Hamann MT. Mar. Drugs 2010; 8: 2395
    • 15c Vaxelaire C. Winter P. Christmann M. Angew. Chem. Int. Ed. 2011; 50: 3605
    • 15d Zhao W. Chen F.-E. Curr. Org. Synth. 2012; 6: 873
    • 15e Xiang F. Stuart M. Vorenkamp J. Roest S. Timmer-Bosscha H. Stuart MC. Fokkink R. Loontjens T. Macromolecules 2013; 46: 4418
    • 15f Ali A. Corrêa AG. Alves D. Zukerman-Schpector J. Westermann B. Ferreira MA. B. Paixão MW. Chem. Commun. 2014; 11926
    • 16a Colombo M. Peretto I. Drug Discov. Today 2008; 13: 677
    • 16b Biggs-Houck JE. Younai A. Shaw JT. Curr. Opin. Chem. Biol. 2010; 14: 371
    • 16c Slobbe P. Ruijter E. Orru RV. A. Med. Chem. Commun. 2012; 3: 1189
    • 16d Dömling A. Wang W. Wang K. Chem. Rev. 2012; 112: 3083
    • 16e van der Heijden G. Ruijter E. Orru RV. A. Synlett 2013; 24: 666
    • 16f Dömling A. Zarganes-Tzitzikas T. Org. Chem. Front. 2014; 1: 834
    • 16g Hulme C. Ayaz M. Martinez-Ariza G. Medda F. Shaw A. In Small Molecule Medicinal Chemistry: Strategies and Technologies . Czechtizky W. Hamley P. Wiley-VCH; Weinheim: 2015. Chap. 6
    • 16h Malinakova HC. Rep. Org. Chem. 2015; 5: 75
    • 16i Cioc RC. Schaepkens van Riempst L. Schuckman P. Ruijter E. Orru RV. A. Synthesis 2017; 49: 1664
    • 17a Kreye O. Tóth T. Meier MA. R. J. Am. Chem. Soc. 2011; 133: 1790
    • 17b Kreye O. Türünç O. Sehlinger A. Rackwitz J. Meier MA. R. Chem. Eur. J. 2012; 18: 5767
    • 17c Sehlinger A. Stalling T. Martens J. Meier MA. R. Macromol. Chem. Phys. 2014; 215: 412
    • 17d Sehlinger A. Meier MA. R. Adv. Polym. Sci. 2015; 269: 61
    • 17e Abdelraheem EM. M. Kurpiewska K. Kalinowska-Tluścik J. Dömling A. J. Org. Chem. 2016; 81: 8789
  • 18 Lesma G. Luraghi A. Rainoldi G. Mattiuzzo E. Bortolozzi R. Viola G. Silvani A. Synthesis 2016; 48: 3907
    • 19a Asinger F. Angew. Chem. 1956; 68: 376
    • 19b Martens J. Offermanns H. Scherberich P. Angew. Chem., Int. Ed. Engl. 1981; 20: 668
    • 19c Liu Z.-Q. Curr. Org. Synth. 2015; 12: 20
    • 20a Weigert WM. Offermanns H. Scherberich P. Angew. Chem., Int. Ed. Engl. 1975; 14: 330
    • 20b Keim W. Offermanns H. Angew. Chem. Int. Ed. 2007; 46: 6010
  • 21 Melby JO. Nard NJ. Mitchell DA. Curr. Opin. Chem. Biol. 2011; 15: 369
  • 22 Altintop MD. Kaplancikli ZA. Ciftci GA. Demirel R. Eur. J. Med. Chem. 2014; 74: 264
  • 23 All potassium (thio)xanthate salts result from the treatment of the corresponding (thio)alcohol with CS2 in the presence of KOH. For an example, see ref. 3d.
  • 24 All acyl chlorides were obtained by the conversion of the corresponding carboxylic acids with SOCl2. For an example, see: Pittelkow M. Boas U. Jessing M. Jensen KJ. Christensen JB. Org. Biomol. Chem. 2005; 3: 508
  • 25 Watzke M. Schulz K. Johannes K. Ullrich P. Martens J. Eur. J. Org. Chem. 2008; 3859
  • 26 Additional crystallographic data for structures 1a, 1s, and 1t have been deposited with the Cambridge Data Centre as supplementary publications No. CCDC 1454934 (1a), 1454935 (1s), and 1454936 (1t). The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 27a Stalling T. Brockmeyer F. Kröger D. Schwäblein A. Martens J. Z. Naturforsch. 2012; 67b: 1045
    • 27b Kröger D. Schlüter T. Fischer M. Geibel I. Martens J. ACS Comb. Sci. 2015; 17: 202
  • 28 Hatam M. Köpper S. Martens J. Heterocycles 1996; 43: 675
  • 29 Baranoff ED. Nazeeruddin MK. Graetzel M. Patent EP 2423214A1, 2012
  • 30 Schulz K. Ratjen L. Martens J. Tetrahedron 2011; 67: 546
  • 31 Nongkunsarn P. Ramsden CA. Tetrahedron 1997; 53: 3805
  • 32 Fulmer GR. Miller AJ. M. Sherden NH. Gottlieb HE. Nudelman A. Stoltz BM. Bercaw JE. Goldberg KI. Organometallics 2010; 29: 2176
  • 33 Sheldrick GM. Acta Crystallogr., Sect. C. 2015; 71: 3