Synlett 2017; 28(20): 2812-2816
DOI: 10.1055/s-0036-1588994
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Direct C2-Arylation of Benzo[b]thiophenes with Electron-Rich Aryl Halides: Facile Access to Thienoacene Derivatives

Fumiki Ichioka
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan   Email: miura@chem.eng.osaka-u.ac.jp
,
Yuhei Itai
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan   Email: miura@chem.eng.osaka-u.ac.jp
,
Yuji Nishii
b   Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
,
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan   Email: miura@chem.eng.osaka-u.ac.jp
› Author Affiliations
Supported by: This work was partly supported by a grant to M.M. from the JSPS KAKENHI (Grant-in Aid for Scientific Research (S)) (JP 24225002)
Further Information

Publication History

Received: 22 February 2017

Accepted after revision: 16 March 2017

Publication Date:
11 April 2017 (online)


Dedicated to Professor Victor Snieckus on the occasion of his 80th birthday

Abstract

Direct coupling reaction of benzo[b]thiophene and electron-rich aryl bromides was achieved under Pd2(dba)3/SPhos catalysis in the presence of NaOt-Bu. The reaction system was applied for the installation of 2-(methylthio)phenyl group onto thiophene-fused polyaromatic molecules, demonstrating facile synthesis of precursors for thienoacene derivatives.

Supporting Information

 
  • References and Notes


    • For selected reviews, see:
    • 1a Sun Z. Ye Q. Chi C. Wu J. Chem. Soc. Rev. 2012; 41: 7857
    • 1b Wang C. Dong H. Hu W. Liu Y. Zhu D. Chem. Rev. 2012; 112: 2208
    • 1c Figueira-Duarte TM. Müllen K. Chem. Rev. 2011; 111: 7260
    • 1d Pron A. Gawrys P. Zagorska M. Djuradoa D. Demadrillea R. Chem. Soc. Rev. 2010; 39: 2577
    • 1e Anthony JE. Angew. Chem. Int. Ed. 2008; 47: 452
  • 2 For a review, see: Takimiya K. Shinamura S. Osaka I. Miyazaki E. Adv. Mater. 2011; 23: 4347
  • 3 Clar E. Polycyclic Hydrocarbons . Vol. 1. Academic Press; New York: 1964
    • 4a Abe M. Mori T. Osaka I. Sugimoto K. Takimiya K. Chem. Mater. 2015; 27: 5049
    • 4b Zou S. Wang Y. Gao J. Liu X. Hao W. Zhang H. Zhang H. Xie H. Yang C. Li H. Hu W. J. Mater. Chem. C 2014; 2: 10011
    • 4c Chen L. Baumgarten M. Guo X. Li M. Marszalek T. Alsewailem FD. Pisula W. Muellen K. J. Mater. Chem. C 2014; 2: 3625
    • 4d Guo X. Tsao HN. Gao P. Xia D. An C. Nazeeruddin MK. Baumgarten M. Grätzel M. Müllen K. RSC Adv. 2014; 4: 54130
    • 4e Zheng T. Lu L. Jackson NE. Lou SJ. Chen LX. Yu L. Macromolecules 2014; 47: 6252
    • 4f Li J. Qiao X. Xiong Y. Li H. Zhu D. Chem. Mater. 2014; 26: 5782
    • 4g Yang YS. Yasuda T. Adachi C. Bull. Chem. Soc. Jpn. 2012; 85: 1186
    • 4h Kim J. Yang C. Han A.-R. Oh JH. Seo JH. Chem. Mater. 2012; 24: 3464
    • 5a Yue W. Ashraf RS. Nielsen CB. Collado-Fregoso E. Niazi MR. Yousaf SA. Kirkus M. Chen H.-Y. Amassian A. Durrant JR. McCulloch I. Adv. Mater. 2015; 27: 4702
    • 5b Qi X. Zou S. Liu X. Hao W. Zhang H. Zang Z. Zhang H. Gao J. Hu W. New J. Chem. 2015; 39: 1045
    • 5c Liu X. Qi X. Gao J. Zou S. Zhang H. Hao W. Zang Z. Li H. Hu W. Org. Electron. 2014; 15: 156
    • 5d Son HJ. Lu L. Chen W. Xu T. Zheng T. Carsten B. Strzalka J. Darling SB. Chen LX. Yu L. Adv. Mater. 2013; 25: 838
    • 5e Huang J. Luo H. Wang L. Guo Y. Zhang W. Chen H. Zhu M. Liu Y. Yu G. Org. Lett. 2012; 14: 3300
  • 6 Ohta A. Akita Y. Ohkuna T. Chiba M. Fukunaga R. Miyafuji A. Nakata T. Tani N. Aoyagi Y. Heterocycles 1990; 31: 1951

    • For selected reviews, see:
    • 7a Rossi R. Bellina F. Lessi M. Manzini C. Adv. Synth. Catal. 2014; 356: 17
    • 7b Roger J. Gottumukkala AL. Doucet H. ChemCatChem 2010; 2: 20
    • 7c Alberico D. Scott ME. Lautens M. Chem. Rev. 2007; 107: 174
    • 7d Miura M. Satoh T. Hirano K. Bull. Chem. Soc. Jpn. 2014; 87: 751 ; and references cited therein
  • 9 Pyrazole-directed C–H arylation of thiophene was reported: Reddy VP. Qiu R. Iwasaki T. Kambe N. Org. Lett. 2013; 15: 1290

    • Selected examples for the arylation of benzo[b]thiophene:
    • 10a Chabert JF. D. Joucla L. David E. Lemaire M. Tetrahedron 2004; 60: 3221
    • 10b David E. Perrin J. Pellet-Rostaing S. Chabert JF. D. Lemaire M. J. Org. Chem. 2005; 70: 3569
    • 10c Liégault B. Lapointe D. Caron L. Vlassova A. Fagnou K. J. Org. Chem. 2009; 74: 1826
    • 10d Tamba S. Okubo Y. Tanaka S. Monguchi D. Mori A. J. Org. Chem. 2010; 75: 6998
    • 10e Zhao L. Bruneau C. Doucet H. Tetrahedron 2013; 69: 7082
  • 11 General Procedure for Scheme 2 In a Schlenk tube, a mixture of benzo[b]thiophene (1, 1.0 mmol), aryl bromide 2 (1.5 mmol), NaOt-Bu (3.0 mmol), Pd2(dba)3 (0.005 mmol), and SPhos (0.01 mmol) in o-xylene (2.0 mL) was heated at 140 °C for specified reaction time under N2. The resulting mixture was poured into H2O and extracted with EtOAc three times. Combined organic layers were dried over Na2SO4 and concentrated in vacuo. The residue was subjected to silica gel chromatography and/or preparative gel permeation chromatography (GPC). 2-(4-Methylphenyl)benzo[b]thiophene (3b) Purified by column chromatography (eluent: hexane–EtOAc, 40:1) followed by GPC, 57% yield, orange solid, mp 56–57 °C. 1H NMR (400 MHz, CDCl3): δ = 2.43 (s, 3 H), 7.20 (dd, J = 1.5, 7.0 Hz, 1 H), 7.32–7.37 (m, 4 H), 7.46 (dd, J = 1.5, 5.5 Hz, 1 H), 7.46 (s, 1 H), 7.80 (dd, J = 1.5, 7.0 Hz, 1 H), 7.84 (dd, J = 1.5, 7.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 16.29, 122.23, 123.88, 124.38, 124.46, 124.47, 124.91, 125.86, 128.96, 131.23, 133.32, 138.39, 140.09, 140.38, 141.67. HRMS (APCI): m/z [M + H]+ calcd for C15H13S2: 257.0487; found: 257.0481. For other compounds, see the Supporting Information.
  • 12 General Procedure for Table 2 In a Schlenk tube, a mixture of thiophene-based fused compound (0.5 mmol), aryl bromide 2 (1.5 mmol), NaOt-Bu (1.5 mmol), Pd2(dba)3 (0.005 mmol), and SPhos (0.01 mmol) in o-xylene (2.0 mL) was heated at 140 °C for 24 h. The resulting mixture was poured into H2O and extracted with EtOAc three times. Combined organic layers were dried over Na2SO4 and concentrated in vacuo. The residue was subjected to silica gel chromatography and/or GPC. 2,5-Bis(2-methylthiophenyl)thieno[3,2-b]thiophene (5) Purified by GPC, 69% yield, white solid, mp 198–199 °C. 1H NMR (400 MHz, CDCl3): δ = 2.45 (s, 6 H), 7.20 (dt, J = 1.6, 7.3 Hz, 2 H), 7.32–7.35 (m, 4 H), 7.44 (s, 2 H), 7.44 (dd, J = 1.4, 7.4 Hz, 2 H). 13C NMR (100 MHz, CDCl3):δ = 16.20, 119.93, 124.80, 125.70, 128.65, 131.01, 133.36, 138.21, 139.37, 142.62. HRMS (APCI): m/z [M + H]+ calcd for C20H17S4: 385.0208; found: 385.0201. For other compounds, see the Supporting Information.