Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(14): 1828-1834
DOI: 10.1055/s-0036-1588982
DOI: 10.1055/s-0036-1588982
letter
FeCl3·6H2O-Catalyzed Tandem Alkylation–Hydrolysis Reaction of Chain α-Oxo Ketene Dithioacetals with Alcohols: Efficient Synthesis of α-Alkylated β-Oxo Thioesters
Supported by: We are grateful to the Fundamental Research Funds for the Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis (130028652)Supported by: the National Nature Science Foundation of China (20902010)
Supported by: Natural Science Foundation of Liaoning Province (201602002)
Supported by: and the Foundation of Liaoning Province Education Administration (L2015003)
Further Information
Publication History
Received: 31 January 2017
Accepted after revision: 05 March 2017
Publication Date:
11 April 2017 (online)
Abstract
A novel FeCl3·6H2O-catalyzed tandem Friedel–Crafts alkylation–hydrolysis reaction between chain α-oxo ketene dithioacetals and alcohols to afford α-alkylated β-oxo thioesters has been successfully developed. The reaction is efficient in the presence of catalyst loading as low as 30 mol% in MeCN at room temperature, and a wide variety of α-alkylated β-oxo thioesters are efficiently synthesized in good yields.
Key words
tandem reaction - ferric chloride - thioester - ketene dithioacetal - Friedel–Crafts alkylationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588982.
- Supporting Information
-
References and Notes
- 1a Longobardo L. Cecere N. DellaGreca M. de Paola I. Amino Acids 2013; 44: 443
- 1b Ghassemian A. Vila-Farres XP. Alewood F. Durek T. Bioorg. Med. Chem. 2013; 21: 3473
- 1c Oh J. Goo E. Hwang I. Rhee S. J. Biol. Chem. 2014; 289: 11465
- 1d Wang F. Wang YJ. Ji JJ. Zhou Z. Yu J. Zhu Z. Su Z. Zhang LX. Zheng JT. ACS Chem. Biol. 2015; 10: 1017
- 1e Chen C. Cao RK. Shrestha R. Ward C. Katz BB. Fischer CJ. Tomich JM. Li P. ACS Chem. Biol. 2015; 10: 1330
- 2a Danheiser RL. Nowick JS. J. Org. Chem. 1991; 56: 1176
- 2b Benaglia M. Cinquini M. Cozzi F. Eur. J. Org. Chem. 2000; 563
- 2c Minami Y. Kuniyasu H. Kambe N. Org. Lett. 2008; 10: 2469
- 2d Fukata Y. Okamura T. Asano K. Matsubara S. Org. Lett. 2014; 16: 2184
- 2e Kobayashi H. Eickhoff JA. Zakarian A. J. Org. Chem. 2015; 80: 9989
- 3a Masamune S. Hayase Y. Schilling W. Chan WK. Bates GS. J. Am. Chem. Soc. 1977; 99: 6756
- 3b Um PJ. Drucckhammer DG. J. Am. Chem. Soc. 1998; 120: 5605
- 3c Arisawa M. Nihei Y. Suzuki T. Yamaguchi M. Org. Lett. 2012; 14: 855
- 4a Sharma I. Crich D. J. Org. Chem. 2011; 76: 6518
- 4b Agrigento P. Albericio F. Chamoin SC. Dacquignies I. Eberle M. Org. Lett. 2014; 16: 3922
- 4c Gui Y. Qiu LQ. Li YH. Li HX. Dong SW. J. Am. Chem. Soc. 2016; 138: 4890
- 5a Conrow R. Portoghese PS. J. Org. Chem. 1986; 51: 938
- 5b Savarin C. Srogl J. Liebeskind LS. Org. Lett. 2000; 2: 3229
- 6a Gopinath P. Vidyarini RS. Chandrasekaran S. J. Org. Chem. 2009; 74: 6291
- 6b Roy HN. Sarker AK. Al Mamun AH. Synth. Commun. 2010; 40: 2158
- 6c Dan WX. Deng HJ. Chen JX. Liu MC. Ding JC. Wu HY. Tetrahedron 2010; 66: 7384
- 6d Narayanaperumal S. AlbertoE E. Gul K. Kawasoko CY. Dornelles L. Rodrigues OE. D. Braga AL. Tetrahedron 2011; 67: 4723
- 6e Pan XC. Curran DP. Org. Lett. 2014; 16: 2728
- 6f Prajapti SK. Nagarsenkar A. Babu BN. Tetrahedron Lett. 2014; 55: 1784
- 7a Singh S. Yadav LD. S. Tetrahedron Lett. 2012; 53: 5136
- 7b Zhu XB. Shi Y. Mao HB. Cheng YX. Zhu CJ. Adv. Synth. Catal. 2013; 355: 3558
- 7c He CH. Qian XW. Sun PP. Org. Biomol. Chem. 2014; 12: 6072
- 7d Huang YT. Lu SY. Yi CL. Lee CF. J. Org. Chem. 2014; 79: 4561
- 7e Ogawa KA. Boydston AJ. Org. Lett. 2014; 16: 1928
- 8a Yan KL. Yang DS. Wei W. Zhao J. Shuai YY. Tian LJ. Wang H. Org. Biomol. Chem. 2015; 13: 7323
- 8b Rong GW. Mao JC. Liu DF. Yan H. Zheng Y. Chen J. RSC Adv. 2015; 5: 26461
- 9a Utsumi N. Kitagaki S. Barbas CF. Org. Lett. 2008; 10: 3405
- 9b Xin DY. Burgess K. Org. Lett. 2014; 16: 2108
- 9c Yost JM. Zhou GQ. Coltart DM. Org. Lett 2006; 8: 1503
- 9d van Zijl AW. Minnaard AJ. Feringa BL. J. Org. Chem. 2008; 73: 5651
- 9e Fuwa H. Noto K. Sasaki M. Org. Lett. 2011; 13: 1820
- 9f Lee JC. H. Hall DG. J. Am. Chem. Soc. 2010; 132: 5544
- 9g Sauer SJ. Garnsey MR. Coltart DM. J. Am. Chem. Soc. 2010; 132: 13997
- 10a Dieter RK. Tetrahedron 1986; 42: 3029
- 10b Junjappa H. Ila H. Asokan CV. Tetrahedron 1990; 46: 5423
- 10c Pan L. Liu Q. Synlett 2011; 1073
- 10d Pan L. Bi XH. Liu Q. Chem. Soc. Rev. 2013; 42: 1251
- 10e Zhang L. Dong JH. Xu XX. Liu Q. Chem. Rev. 2016; 116: 287
- 11a Singh PP. Yadav AK. Ila H. Junjappa H. J. Org. Chem. 2009; 74: 5496
- 11b Yu HF. Yu ZK. Angew. Chem. Int. Ed. 2009; 48: 2929
- 11c Yu HF. Jin WW. Sun CL. Yu ZK. Angew. Chem. Int. Ed. 2010; 49: 5792
- 11d Liang D. Wang M. Bekturhun B. Xiong B. Liu Q. Adv. Synth. Catal. 2010; 352: 1593
- 11e Liu Y. Barry BD. Yu HF. Liu JQ. Liao PQ. Bi XH. Org. Lett. 2013; 15: 2608
- 11f Fang GC. Li JC. Wang YM. Gou MY. Liu Q. Li XQ. Bi XH. Org. Lett. 2013; 15: 4126
- 11g Fang ZX. Liu Y. Barry BD. Liao PQ. Bi XH. Org. Lett. 2015; 17: 782
- 11h Yu HF. Zhang YM. Li TC. Liao PQ. Diao QP. Xin G. Meng QL. Hou DY. RSC Adv. 2015; 5: 11293
- 12a Bi XH. Dong DW. Liu Q. J. Am. Chem. Soc. 2005; 127: 4578
- 12b Zhang L. Liang FS. Cheng X. Liu Q. J. Org. Chem. 2009; 74: 899
- 12c Ming WB. Liu XC. Wang LJ. Liu J. Wang M. Org. Lett. 2015; 17: 1746
- 12d Luo HM. Pan L. Xu XX. Liu Q. J. Org. Chem. 2015; 80: 8282
- 13a Jin WW. Du WM. Yang Q. Yu HF. Yu ZK. Org. Lett. 2011; 13: 4272
- 13b Dong Y. Wang M. Liu J. Chem. Commun. 2011; 7380
- 13c Yu HF. Liao PQ. Tetrahedron Lett. 2016; 57: 2868
- 14a Yu HF. Wang DL. Zhao H. Hou DY. Chin. J. Org. Chem. 2011; 31: 1949
- 14b Yu HF. Chin. J. Chem. 2012; 23: 367
- 14c Yu HF. Liao PQ. Chem. J. Chin. Univ. 2012; 33: 1969
- 14d Yu HF. Synth. Commun. 2013; 43: 1280
- 15a Samanta S. Mondal S. Santra S. Kibriya G. Hajra A. J. Org. Chem. 2016; 81: 10088
- 15b Sawama Y. Masuda M. Asai S. Goto R. Nagata S. Nishimura S. Monguchi Y. Sajiki H. Org. Lett. 2015; 17: 434
- 15c Mondal A. Mukhopadhyay C. ACS Comb. Sci. 2015; 17: 404
- 15d You X. Wang GW. J. Org. Chem. 2014; 79: 117
- 15e He XW. Shang YJ. Yu ZY. Yao MF. Han ZG. Wu FL. J. Org. Chem. 2014; 79: 8882
- 15f Song Y. Tang XS. Hou XM. Bai YJ. Chin. J. Org. Chem. 2013; 33: 76
- 15g Yang Q. Wang LD. Guo TL. Yu ZK. J. Org. Chem. 2012; 77: 8355
- 16a Yu HF. Li TC. Liao PQ. Synthesis 2012; 44: 3743
- 16b Zhao H. Zhang F. Yu H. Liao P. Diao Q. Li T. Xin G. Hou D. Chin. J. Org. Chem. 2015; 35: 1493
- 16c Yu HF. Liao PQ. Chem. Res. Chin. Univ. 2016; 32: 390
- 16d Song JN. Fang ZX. Liu Y. Li R. Xu LX. Barry BD. Liu Q. Bi XH. Liao PQ. Synlett 2011; 2551
- 17 Typical Procedure for the Preparation of α-Alkylated β-Oxo Thioester 3 The mixture of α-oxo ketene dithioacetals 1 (0.25 mmol), alcohols 2 (0.25 mmol), and FeCl3·6H2O (20 mg, 0.075 mmol) in MeCN (1 mL) was stirred for 10 h at r.t. Another 0.125 mmol of alcohols was then added, and the mixture was further stirred for 14 h at r.t. until 1 was completely consumed by TLC monitoring. The reaction mixture was then added to cold water (50 mL), and desired products 3 as a solid deposited from the reaction system. After filtered, the crude product 3 was purified by flash silica gel chromatography [PE (60–90 °C)–EtOAc, 15:1 v/v] to give pure 3 in good yield. Analytical Data of 3a Yield 87%; white crystalline solid; mp 150–151 °C. 1H NMR (600 MHz, CDCl3): δ = 7.97 (d, J = 7.7 Hz, 2 H), 7.55 (t, 1 H), 7.43 (t, 2 H), 7.36 (d, J = 7.7 Hz, 2 H), 7.28 (d, J = 7.5 Hz, 2 H), 7.21 (d, J = 7.4 Hz, 2 H), 7.18 (t, 1 H), 7.12 (t, 2 H), 7.04 (t, 1 H), 5.66 (d, J = 11.8 Hz, 1 H), 5.15 (d, J = 11.8 Hz, 1 H), 2.73–2.64 (m, 2 H), 0.97 (t, 3 H). 13C NMR (150 MHz, CDCl3): δ = 193.0, 192.6, 141.5, 141.1, 136.8, 133.6, 128.8 (2 C), 128.7 (2 C), 128.6 (2 C), 128.5 (4 C), 127.8 (2 C), 126.8, 126.6, 67.1, 52.1, 23.9, 14.2. HRMS: m/z calcd for C24H22NaO2S+ [M + Na]+: 397.1233; found: 397.1237.