Synlett 2016; 27(20): 2851-2857
DOI: 10.1055/s-0036-1588881
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Tandem Reaction of 2-Aminobenzamides with Tertiary Amines for the Synthesis of Quinazolinone Derivatives

Wei Xu
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China   Email: dcl78@wzu.edu.cn
,
Xiao-Rui Zhu
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China   Email: dcl78@wzu.edu.cn
,
Peng-Cheng Qian
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China   Email: dcl78@wzu.edu.cn
,
Xing-Guo Zhang
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China   Email: dcl78@wzu.edu.cn
,
Chen-Liang Deng*
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China   Email: dcl78@wzu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 05 July 2016

Accepted after revision: 21 August 2016

Publication Date:
09 September 2016 (online)


Abstract

We developed a copper-catalyzed tandem reaction of 2-aminobenzamides with tertiary amines for the formation of quinazolinone derivatives. The strategy includes two steps (cyclization and coupling) performed in one pot. A number of substrates reacted well under standard conditions to give the corresponding quinazolinone derivatives in moderate to good yields.

Supporting Information

 
  • References

    • 2a Takase Y, Saeki T, Watanabe N, Adachi H, Souda S, Saito I. J. Med. Chem. 1994; 37: 2106
    • 2b Hour M.-J, Huang L.-J, Kuo S-C, Xia Y, Bastow K, Nakanishi Y, Hamel E, Lee K-H. J. Med. Chem. 2000; 43: 4479
    • 2c Chinigo GM, Paige M, Grindrod S, Hamel E, Dakshanamurthy S, Chruszcz M, Minor W, Brown ML. J. Med. Chem. 2008; 51: 4620
    • 2d Mohamed MA, Ayyad RR, Shawer TZ, Abdel-Aziz AA.-M, El-Azab AS. Eur. J. Med. Chem. 2016; 112: 106
    • 3a Kuneš J, Bažant J, Pour M, Waisser K, Šlosárek M, Janota J. Farmaco 2000; 55: 725
    • 3b Waisser K, Gregor J, Dostál H, Kuneš J, Kubicová L, Klimešová V, Kaustová J. Farmaco 2001; 56: 803
  • 4 Peet NP, Baugh LE, Sunder S, Lewis JE, Matthews EH, Olberding EL, Shah DN. J. Med. Chem. 1986; 29: 2403
  • 5 Mhaske SB, Argade NP. Tetrahedron 2006; 62: 9787
    • 6a Ôrfi L, Kökösi J, Szász G, Kövesdi I, Mák M, Teplán I, Kéri G. Bioorg. Med. Chem. 1996; 4: 547
    • 6b Lin J, Shen W, Xue J, Sun J, Zhang X, Zhang C. Eur. J. Med. Chem. 2012; 55: 39
    • 7a Domon L, Le Coeur C, Grelard A, Thiéry V, Besson T. Tetrahedron Lett. 2001; 42: 6671
    • 7b Nowak M, Malinowaski Z, Jóźwiak A, Fornal E, Blaszczyk A, Kontek R. Tetrahedron 2014; 70: 5153
    • 7c He L, Li H, Chen J, Wu X.-F. RSC Adv. 2014; 4: 12065
    • 8a Hikawa H, Ino K, Suzuki H, Yokoyama Y. J. Org. Chem. 2012; 77: 7046
    • 8b Zhao D, Zhou Y.-R, Shen Q, Li J.-X. RSC Adv. 2014; 4: 6486
    • 8c Zhang Z, Wang M, Zhang C, Zhang Z, Lu J, Wang F. Chem. Commun. 2015; 51: 9205
  • 9 Ge W, Zhu X, Wei Y. RSC Adv. 2013; 3: 10817
  • 11 Zhao D, Wang T, Li J.-X. Chem. Commun. 2014; 50: 6471
  • 12 Kostakis IK, Elomri A, Seguin E, Iannelli M, Besson T. Tetrahedron Lett. 2007; 48: 6609
    • 13a Ji F, Lv M.-F, Yi W.-B, Cai C. Org. Biomol. Chem. 2014; 12: 5766
    • 13b He L, Sharif M, Neumann H, Beller M, Wu X.-F. Green Chem. 2014; 16: 3763
    • 13c Jiang X, Tang T, Wang J.-M, Chen Z, Zhu Y.-M, Ji S.-J. J. Org. Chem. 2014; 79: 5082
    • 13d He L, Li H, Neumann H, Beller M, Wu X.-F. Angew. Chem. Int. Ed. 2014; 53: 1420
    • 13e Xu T, Alper H. Org. Lett. 2015; 17: 1569
    • 14a Akazome M, Kondo T, Watanabe Y. J. Org. Chem. 1993; 58: 310
    • 14b Watson AJ. A, Maxwell AC, Williams JM. J. Org. Biomol. Chem. 2012; 10: 240
    • 15a Chen D.-S, Dou G.-L, Li Y.-L, Liu Y, Wang X.-S. J. Org. Chem. 2013; 78: 5700
    • 15b Chai H, Li J, Yang L, Lu H, Qi Z, Shi D. RSC Adv. 2014; 4: 44811
    • 15c Fang Y, Li Y, Cheng G, Wang L, Cui X. J. Org. Chem. 2015; 80: 7099
    • 15d Bao Y, Yan Y, Xu K, Su J, Zha Z, Wang Z. J. Org. Chem. 2015; 80: 4736
    • 15e Liu M, Shu M, Yao C, Yin G, Wang D, Huang J. Org. Lett. 2016; 18: 824
  • 17 Ji X, Zhou Y, Wang J, Zhao L, Jiang H, Liu H. J. Org. Chem. 2013; 78: 4312
    • 18a Hu RH, Li XT, Yong Y, Miao DZ, Pan Q, Jiang ZQ, Gan HF, Han SQ. Synlett 2016; 27: 1387
    • 18b Kumar M, Richa SS, Bhatt V, Kumar N. Adv. Synth. Catal. 2015; 357: 2862
    • 18c Modi A, Ali W, Mohanta PR, Khatun N, Patel BK. ACS Sustainable Chem. Eng. 2015; 3: 2582
    • 18d Fang T, Gao X.-H, Tang R.-Y, Zhang X.-G, Deng C.-L. Chem. Commun. 2014; 50: 14775
    • 18e Xie Y, Qian B, Xie P, Huang H. Adv. Synth. Catal. 2013; 355: 1315
    • 18f Guo S, Qian B, Xie Y, Xia C, Huang H. Org. Lett. 2011; 13: 522
    • 18g Xu W, Fu H. J. Org. Chem. 2011; 76: 3846
  • 19 2-Methyl-3-phenylquinazolin-4(3H)-one (3); Typical Procedure A reaction tube was charged under air with 2-aminobenzanilide (1a, 0.2 mmol), Et3N (2a, 0.6 mmol), Cu2O (10 mol%), PCy3 (10 mol%), and CHCl3 (2 mL). The vessel was sealed, heated at 100 °C (oil-bath temperature) for 24 h, and then cooled to r.t. DDQ (1 equiv) was added, and the mixture was kept at r.t. for 1 h. After filtration of the mixture and evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography [silica gel, hexane–EtOAc (3:1)] to give a light-yellow solid; yield: 42.0 mg (89%); mp 147–148 °C. 1H NMR (500 MHz, CDCl3): δ = 8.27 (dd, J = 8.0, 1.0 Hz, 1 H), 7.79–7.76 (m, 1 H), 7.69 (d, J = 8.0 Hz, 1 H), 7.58–7.55 (m, 2 H), 7.53–7.51 (m, 1 H), 7.49–7.46 (m, 1 H), 7.28–7.26 (m, 2 H), 2.26 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 162.2, 154.3, 147.4, 137.7, 134.6, 130.0, 129.3, 128.0, 127.1, 126.7, 126.7, 120.8, 24.3. LRMS (EI, 70 eV): m/z (%) = 236 (100), 235 (80), 221 (58), 143 (16), 77 (50).