Synlett 2016; 27(17): 2401-2406
DOI: 10.1055/s-0036-1588879
synpacts
© Georg Thieme Verlag Stuttgart · New York

Recent Progress in Base Metal Catalyzed (Transfer) Hydrogenative Couplings of Carbonyls with π-Unsaturated Compounds

Yan-Long Zheng
a   State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. of China   Email: mcye@nankai.edu.cn
,
Yu-Xin Luan
a   State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. of China   Email: mcye@nankai.edu.cn
,
Mengchun Ye*
a   State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. of China   Email: mcye@nankai.edu.cn
b   Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 11 July 2016

Accepted: 10 August 2016

Publication Date:
02 September 2016 (online)


Abstract

Catalytic hydrogenative coupling of carbonyls with π-unsaturated compounds employing hydrogen gas or H donors as terminal reductants is an attractive method for C–C bond formation. Herein, we give a brief review on its development and highlight recent advances on the use of base metal catalysts, such as nickel and iron.

1 Introduction

2 Noble Metal Catalyzed (Transfer) Hydrogenative Couplings of Carbonyls with π-Unsaturated Compounds

3 Nickel-Catalyzed Transfer Hydrogenative Couplings of Paraformaldehyde with π-Unsaturated Compounds

4 Iron-Catalyzed Transfer Hydrogenative Couplings of Carbonyls with π-Unsaturated Compounds

5 Conclusion

 
  • References


    • For reviews, see:
    • 1a Montgomery J. Acc. Chem. Res. 2000; 33: 467
    • 1b Montgomery J. Angew. Chem. Int. Ed. 2004; 43: 3890
    • 1c Moslin RM, Miller-Moslin K, Jamison TF. Chem. Commun. 2007; 4441
    • 1d Jeganmohan M, Cheng CH. Chem. Eur. J. 2008; 14: 10876
    • 1e Ng SS, Ho CY, Schleicher KD, Jamison TF. Pure Appl. Chem. 2008; 80: 929
    • 1f Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
  • 2 Molander GA, Hoberg JO. J. Am. Chem. Soc. 1992; 114: 3123
  • 3 Kokubo K, Miura M, Nomura M. Organometallics 1995; 14: 4521
  • 4 Jang HY, Huddleston RR, Krische MJ. J. Am. Chem. Soc. 2002; 124: 15156

    • For reviews, see:
    • 5a Jang HY, Krische MJ. Acc. Chem. Res. 2004; 37: 653
    • 5b Skucas E, Ngai MY, Komanduri V, Krische MJ. Acc. Chem. Res. 2007; 40: 1394
    • 5c Bower JF, Kim IS, Patman RL, Krische MJ. Angew. Chem. Int. Ed. 2009; 48: 34
    • 5d Ketcham JM, Shin I, Montgomery TP, Krische MJ. Angew. Chem. Int. Ed. 2014; 53: 9142
  • 6 Jang H.-Y, Huddleston RR, Krische MJ. J. Am. Chem. Soc. 2002; 124: 15156
  • 7 Huddleston RR, Jang H.-Y, Krische MJ. J. Am. Chem. Soc. 2003; 125: 11488
  • 8 Jang H.-Y, Huddleston RR, Krische MJ. J. Am. Chem. Soc. 2004; 126: 4664
  • 9 Ngai M.-Y, Barchuk A, Krische MJ. J. Am. Chem. Soc. 2007; 129: 280
  • 10 Skucas E, Bower JF, Krische MJ. J. Am. Chem. Soc. 2007; 129: 12678
  • 11 Kim IS, Ngai M.-Y, Krische MJ. J. Am. Chem. Soc. 2008; 130: 6340
  • 12 Bower JF, Patman RL, Krische MJ. Org. Lett. 2008; 10: 1033
  • 13 Cho C.-W, Skucas E, Krische MJ. Organometallics 2007; 26: 3860
  • 14 Hong YT, Barchuk A, Krische MJ. Angew. Chem. Int. Ed. 2006; 45: 6885
  • 15 Yamaguchi E, Mowat J, Luong T, Krische MJ. Angew. Chem. Int. Ed. 2013; 52: 8428
  • 16 Bausch CC, Patman RL, Breit B, Krische MJ. Angew. Chem. Int. Ed. 2011; 50: 5687
  • 17 Köpfer A, Sam B, Breit B, Krische MJ. Chem. Sci. 2013; 4: 1876
  • 18 Chuah GK, Jaenicke S, Zhu YZ, Liu SH. Curr. Org. Chem. 2006; 10: 1639
  • 19 Radianingtyas H, Wright PC. FEMS Microbiol. Rev. 2003; 27: 593
  • 20 Zheng YL, Liu YY, Wu YM, Wang YX, Lin YT, Ye M. Angew. Chem. Int. Ed. 2016; 55: 6315