Subscribe to RSS
DOI: 10.1055/s-0036-1588845
Nickel-Catalyzed Negishi Cross-Coupling of N-Acylsuccinimides: Stable, Amide-Based, Twist-Controlled Acyl-Transfer Reagents via N–C Activation
Publication History
Received: 25 March 2017
Accepted after revision: 02 May 2017
Publication Date:
13 June 2017 (online)
Published as part of the Special Topic Advanced Strategies in Synthesis with Nickel
Abstract
This paper reports a room temperature, nickel-catalyzed Negishi cross-coupling of N-acylsuccinimides with arylzinc reagents via selective N–C bond cleavage enabled by amide bond twist. The reaction proceeds using a commercially available, air-stable Ni(II) precatalyst in the absence of additives under exceedingly mild conditions. Of broad interest, this report introduces N-acylsuccinimides as stable, crystalline, electrophilic, cost-effective, benign, amide-based acyl transfer reagents via acyl metal intermediates. The reaction selectivity is governed by half-twist of the amide bond in N-acylsuccinimides, thus opening the door for applications in metal-catalyzed manifolds via redox-neutral reaction pathways tuneable by amide bond distortion.
Key words
nickel - Negishi cross-coupling - N–C activation - succinimide - twisted amides - amide cross-coupling - acyl transferSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588845.
- Supporting Information
-
References
- 1a Meng G. Shi S. Szostak M. Synlett 2016; 27: 2530
- 1b Liu C. Szostak M. Chem. Eur. J. 2017; 23: 7157
- 1c Dander JE. Garg NK. ACS Catal. 2017; 7: 1413
- 2a Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A. Bräse S. Oestreich M. Wiley; New York: 2014
- 2b Science of Synthesis: Cross-Coupling and Heck-Type Reactions . Vol. 1–3. Molander GA. Wolfe JP. Larhed M. Thieme; Stuttgart: 2013
- 2c Johansson-Seechurn CC. C. Kitching MO. Colacot TJ. Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
- 3a Hie L. Nathel NF. F. Shah TK. Baker EL. Hong X. Yang YF. Liu P. Houk KN. Garg NK. Nature 2015; 524: 79
- 3b Weires NA. Baker EL. Garg NK. Nat. Chem. 2016; 8: 75
- 3c Baker EL. Yamano MM. Zhou Y. Anthony SM. Garg NK. Nat. Commun. 2016; 7: 11554
- 3d Simmons BJ. Weires NA. Dander JE. Garg NK. ACS Catal. 2016; 6: 3176
- 3e Dander JE. Weires NA. Garg NK. Org. Lett. 2016; 18: 3934
- 3f Hie L. Baker EL. Anthony SM. Desrosiers JN. Senanayake C. Garg NK. Angew. Chem. Int. Ed. 2016; 55: 15129
- 3g Medina JM. Moreno J. Racine S. Du S. Garg NK. Angew. Chem. Int. Ed. 2017; 56: 6567
- 4a Meng G. Szostak M. Angew. Chem. Int. Ed. 2015; 54: 14518
- 4b Shi S. Meng G. Szostak M. Angew. Chem. Int. Ed. 2016; 55: 6959
- 4c Meng G. Szostak M. Org. Lett. 2016; 18: 796
- 4d Liu C. Meng G. Szostak M. J. Org. Chem. 2016; 81: 12023
- 4e Shi S. Szostak M. Org. Lett. 2017; 19: DOI: 10.1021/acs.orglett.7b01199
- 5a Meng G. Szostak M. Org. Lett. 2015; 17: 4364
- 5b Meng G. Szostak M. Org. Biomol. Chem. 2016; 14: 5690
- 5c See ref. 1a,b.
- 5d Szostak R. Shi S. Meng G. Lalancette R. Szostak M. J. Org. Chem. 2016; 81: 8091
- 5e Pace V. Holzer W. Meng G. Shi S. Lalancette R. Szostak R. Szostak M. Chem. Eur. J. 2016; 22: 14494
- 5f Szostak R. Meng G. Szostak M. J. Org. Chem. 2017; 82: DOI: 10.1021/acs.joc.7b00971
- 6a Shi S. Szostak M. Chem. Eur. J. 2016; 22: 10420
- 6b Meng G. Shi S. Szostak M. ACS Catal. 2016; 6: 7335
- 6c Shi S. Szostak M. Org. Lett. 2016; 18: 5872
- 6d Liu C. Meng G. Liu Y. Liu R. Lalancette R. Szostak R. Szostak M. Org. Lett. 2016; 18: 4194
- 6e Lei P. Meng G. Szostak M. ACS Catal. 2017; 7: 1960
- 6f Liu C. Liu Y. Liu R. Lalancette R. Szostak R. Szostak M. Org. Lett. 2017; 19: 1434
- 6g Meng G. Lei P. Szostak M. Org. Lett. 2017; 19: 2158
- 7 The first example of C–C bond formation by amide bond cross-coupling was reported by the Zou group: Li X. Zou G. Chem. Commun. 2015; 51: 5089
- 8a Hu J. Zhao Y. Liu J. Zhang Y. Shi Z. Angew. Chem. Int. Ed. 2016; 55: 8718
- 8b Cui M. Wu H. Jian J. Wang H. Liu C. Daniel S. Zeng Z. Chem. Commun. 2016; 52: 12076
- 8c Wu H. Cui M. Jian J. Zheng Z. Adv. Synth. Catal. 2016; 358: 3876
- 8d Wu H. Liu T. Cui M. Li Y. Jian J. Wang H. Zeng Z. Org. Biomol. Chem. 2017; 15: 536
- 8e Dey A. Sasmai S. Seth K. Lahiri GK. Maiti D. ACS Catal. 2017; 7: 433
- 8f Liu L. Chen P. Sun Y. Wu Y. Chen S. Zhu J. Zhao Y. J. Org. Chem. 2016; 81: 11686
- 8g Yue H. Guo L. Liao HH. Cai Y. Zhu C. Rueping M. Angew. Chem. Int. Ed. 2017; 56: 4282
- 8h Yue H. Guo L. Lee SC. Liu X. Rueping M. Angew. Chem. Int. Ed. 2017; 56: 3972
- 8i For an excellent de-hydroamidocarbonylation, see: Hu J. Wang M. Pu X. Shi Z. Nat. Commun. 2017; 8: 14993
- 8j For Ni/photoredox coupling using N-acylsuccinimides, see: Amani J. Alam R. Badir S. Molander GA. Org. Lett. 2017; 19: 2426
- 8k For reductive coupling of N-acylglutarimides, see: Ni S. Zhang W. Mei H. Han J. Pan Y. Org. Lett. 2017; 19: 2536
- 9a Liu Y. Meng G. Liu R. Szostak M. Chem. Commun. 2016; 52: 6841
- 9b Liu Y. Liu R. Szostak M. Org. Biomol. Chem. 2017; 15: 1780
- 9c Liu Y. Shi S. Achtenhagen M. Liu R. Szostak M. Org. Lett. 2017; 19: 1614
- 9d Liu C. Achtenhagen M. Szostak M. Org. Lett. 2016; 18: 2375
- 10 Review on acyl-metal intermediates: Gooßen LJ. Rodriguez N. Gooßen K. Angew. Chem. Int. Ed. 2008; 47: 3100
- 11a Review on electrophilic activation of amides: Kaiser D. Maulide N. J. Org. Chem. 2016; 81: 4421
- 11b For an excellent overview of amide cross-coupling, see: Ruider SA. Maulide N. Angew. Chem. Int. Ed. 2015; 54: 13856
- 12a Tani K. Stoltz BM. Nature 2006; 441: 731
- 12b Greenberg A. Venanzi CA. J. Am. Chem. Soc. 1993; 115: 6951
- 12c Szostak R. Aubé J. Szostak M. Chem. Commun. 2015; 51: 6395
- 13 Several suppliers list succinimide for < $ 0.05/g. In bulk, succinimide is available for < $ 0.01/g. Accessed 03/20/2017.
- 14 Note that scission of the N–Z bond (Z = activating group) is a major side reaction in amide bond cross-coupling.
- 15a Haas D. Hammann JM. Greiner R. Knochel P. ACS Catal. 2016; 6: 1540
- 15b Benischke AD. Ellwart M. Becker MR. Knochel P. Synthesis 2016; 48: 1101
- 15c Handbook of Functionalized Organometallics . Knochel P. Wiley-VCH; Weinheim: 2005
- 15d Klatt T. Markiewicz JT. Sämann C. Knochel P. J. Org. Chem. 2014; 79: 4253
- 15e Haag B. Mosrin M. Ila H. Malakhov V. Knochel P. Angew. Chem. Int. Ed. 2011; 50: 9794
- 15f Thapa S. Kafle A. Gurung SK. Montoya A. Riedl P. Giri R. Angew. Chem. Int. Ed. 2015; 54: 8236
- 15g Joshi-Pangu A. Ganesh M. Biscoe MR. Org. Lett. 2011; 13: 1218
- 15h Xie LG. Wang ZX. Angew. Chem. Int. Ed. 2011; 50: 4901
- 15i Thaler T. Haag B. Gavryushin A. Schober K. Hartmann E. Gschwind RM. Zipse H. Mayer P. Knochel P. Nat. Chem. 2010; 2: 125
- 15j Bercot EA. Rovis T. J. Am. Chem. Soc. 2002; 124: 174
- 15k Johnson JB. Rovis T. Acc. Chem. Res. 2008; 41: 327
- 15l Tokuyama H. Yokoshima S. Yamashita T. Fukuyama T. Tetrahedron Lett. 1998; 39: 3189
- 15m Kunchithapatham K. Eichman CE. Stambuli JP. Chem. Commun. 2011; 47: 12697
- 15n Oost R. Misale A. Maulide N. Angew. Chem. Int. Ed. 2016; 55: 4587
- 15o Misale A. Niyomchon S. Luparia M. Maulide N. Angew. Chem. Int. Ed. 2014; 53: 7068
- 16a Tasker SZ. Standley EA. Jamison TF. Nature 2014; 509: 299
- 16b Mesganaw T. Garg NK. Org. Process Res. Dev. 2013; 17: 29
- 16c Rosen BM. Quasdorf KW. Wilson DA. Zhang N. Resmerita AM. Garg NK. Percec V. Chem. Rev. 2011; 111: 1346
- 16d Tang ZY. Hu QS. J. Am. Chem. Soc. 2004; 126: 3058
- 16e Xing CH. Lee JR. Tang ZY. Zheng JR. Hu QS. Adv. Synth. Catal. 2011; 353: 2011
- 16f Chen WB. Xing CH. Dong J. Hu QS. Adv. Synth. Catal. 2016; 358: 2072
- 16g Guan BT. Wang Y. Li BJ. Yu DG. Shi ZJ. J. Am. Chem. Soc. 2008; 130: 14468
- 16h Quasdorf KW. Tian X. Garg NK. J. Am. Chem. Soc. 2008; 130: 14422
- 16i Muto K. Yamaguchi J. Musaev DG. Itami K. Nat. Commun. 2015; 6: 7508
- 16j Correa A. Leon T. Martin R. J. Am. Chem. Soc. 2014; 136: 1062
- 16k Tobisu M. Shimasaki T. Chatani N. Angew. Chem. Int. Ed. 2008; 47: 4866
- 16l Yang J. Chen T. Han LB. J. Am. Chem. Soc. 2015; 137: 1782
- 16m Zhou Q. Cobb KM. Tan T. Watson MP. J. Am. Chem. Soc. 2016; 138: 12057
- 16n Erickson LW. Lucas EL. Tollefson EJ. Jarvo ER. J. Am. Chem. Soc. 2016; 138: 14006
- 17 At present, only 3 general methods for room-temperature N–C amide bond cross-coupling have been reported. See, refs. 3d, 6a, and 6c. See also ref. 8j.
- 18a Jabeen I. Pleban K. Rinner U. Chiba P. Ecker GF. J. Med. Chem. 2012; 55: 3261
- 18b Sharmoukh W. Kol KC. Noh C. Lee JY. Son SU. J. Org. Chem. 2010; 75: 6708
- 18c Kameswaran V. Patent WO2001051440 A1, 2001
- 18d Leze MP. Le Borgne M. Pinson P. Palusczak A. Duflos M. Le Baut G. Hartmann RW. Bioorg. Med. Chem. Lett. 2006; 16: 1134
- 19 Phapale VB. Cardenas DJ. Chem. Soc. Rev. 2009; 38: 1598
- 20 For a review on nucleophilic reactivity of organozinc reagents, see: Knochel P. Singer RD. Chem. Rev. 1993; 93: 2117
- 21 N-Acylsuccinimides are crystalline, bench-stable solids, with no decomposition observed when stored on an open bench-top at ambient conditions for periods >12 months.
Reviews on N–C amide cross-coupling:
General reviews on cross-coupling:
For other studies from the Garg group, see:
Decarbonylative coupling:
Mechanistic model:
For mechanistic studies on N–C bond cleavage, see:
Acyl coupling:
For a recent excellent use of N-glutarimides in decarbonylative N–C coupling, see:
For metal-free reactions by resonance destabilization controlled amide bond N–C activation, see:
For N–C activation by amide pyramidalization, see:
For leading references on twisted bridged amides, see:
Reviews on Negishi cross-coupling:
Selected recent examples:
Negishi coupling of cyclic anhydrides:
Fukuyama coupling:
Reviews on Ni-catalysis:
Select examples: