RSS-Feed abonnieren
DOI: 10.1055/s-0036-1588830
Large π-Extension of Carbon Nanorings by Incorporating Hexa-peri-hexabenzocoronenes
This work was financially supported by the National Natural Science Foundation of China (21473170, 21271166), the Fundamental Research Funds for the Central Universities, the Program for New Century Excellent Talents in University (NCET), and the Thousand Young Talents Program.Publikationsverlauf
Received: 20. März 2017
Accepted after revision: 19. April 2017
Publikationsdatum:
06. Juni 2017 (online)
Dedicated to Professor Richard Eisenberg
Abstract
Recently, we reported the synthesis of two novel large π-extended carbon nanorings by incorporating hexa-peri-hexabenzocoronenes: cyclo[12]-paraphenylene[2]-2,11-hexa-peri-hexabenzocoronene ([12,2]CPHBC) and the [4]cyclo-2,11-para-hexa-peri-hexabenzocoronene ([4]CHBC). The successful synthesis was achieved by the rationally designed pathways via palladium-, nickel-, or platinum-mediated reactions and the final aromatization reaction. This Synpacts article highlights the synthetic methods to achieve these carbon nanorings with large conjugated systems. We also summarize the representative characterization evidences and interesting photophysical properties of these carbon nanoring structures. Furthermore, the selective supramolecular host–guest interaction between [4]CHBC and C70 is briefly discussed. The new π-extended carbon nanorings can be considered as examples of longitudinal extension of the cycloparaphenylene scaffold, forming large conjugated CNT segments.
1 Introduction
2 Large π-Extended Carbon Nanorings by Incorporating Hexa-peri-hexabenzocoronenes
3 Conclusions
-
References
- 1 Iijima S. Nature (London, U.K.) 1991; 354: 56
- 2 Avouris P. Chen Z. Perebeinos V. Nat. Nanotechnol. 2007; 2: 605
- 3 Avouris P. Freitag M. Perebeinos V. Nat. Photonics 2008; 2: 341
- 4 Sgobba V. Guldi DM. Chem. Soc. Rev. 2009; 38: 165
- 5 Coleman JN. Khan U. Blau WJ. Gun’ko YK. Carbon 2006; 44: 1624
- 6 Carlson LJ. Krauss TD. Acc. Chem. Res. 2008; 41: 235
- 7 Guo T. Nikolaev P. Thess A. Colbert DT. Smalley RE. Chem. Phys. Lett. 1995; 243: 49
- 8 Ajayan PM. Chem. Rev. 1999; 99: 1787
- 9 Parekh VC. Guha PC. J. Indian Chem. Soc. 1934; 11: 95
- 10 Friederich R. Nieger M. Vögtle F. Chem. Ber. 1993; 126: 1723
- 11 Jasti R. Bhattacharjee J. Neaton JB. Bertozzi CR. J. Am. Chem. Soc. 2008; 130: 17646
- 12 Fort EH. Donovan PM. Scott LT. J. Am. Chem. Soc. 2009; 131: 16006
- 13 Fort EH. Scott LT. Angew. Chem. Int. Ed. 2010; 49: 6626
- 14 Fort EH. Scott LT. J. Mater. Chem. 2011; 21: 1373
- 15 Bodwell GJ. Nat. Nanotechnol. 2010; 5: 103
- 16 Smalley RE. Li Y. Moore VC. Price BK. Colorado RJr. Schmidt HK. Hauge RH. Barron AR. Tour JM. J. Am. Chem. Soc. 2006; 128: 15824
- 17 Yu X. Zhang J. Choi W. Choi JY. Kim JM. Gan L. Liu Z. Nano Lett. 2010; 10: 3343
- 18 Hirst ES. Jasti R. J. Org. Chem. 2012; 77: 10473
- 19 Omachi H. Matsuura S. Segawa Y. Itami K. Angew. Chem. Int. Ed. 2010; 49: 10202
- 20 Omachi H. Segawa Y. Itami K. Acc. Chem. Res. 2012; 45: 1378
- 21 Yamago S. Watanabe Y. Iwamoto T. Angew. Chem. Int. Ed. 2010; 49: 757
- 22 Yamago S. Kayahara E. Iwamoto T. Chem. Rev. 2014; 14: 84
- 23 Huang Z.-A. Chen C. Yang X.-D. Fan X.-B. Zhou W. Tung C.-H. Wu L.-Z. Cong H. J. Am. Chem. Soc. 2016; 138: 11144
- 24 Yagi A. Segawa Y. Itami K. J. Am. Chem. Soc. 2012; 134: 2962
- 25 Hitosugi S. Nakanishi W. Yamasaki T. Isobe H. Nat. Commun. 2011; 2: 492
- 26 Iwamoto T. Kayahara E. Yasuda N. Suzuki T. Yamago S. Angew. Chem. Int. Ed. 2014; 53: 6430
- 27 Nishiuchi T. Feng X. Enkelmann V. Wagner M. Müllen K. Chem. Eur. J. 2012; 18: 16621
- 28 Golling FE. Quernheim M. Wagner M. Nishiuchi T. Müllen K. Angew. Chem. Int. Ed. 2014; 53: 1525
- 29 Quernheim M. Golling FE. Zhang W. Wagner M. Rader HJ. Nishiuchi T. Müllen K. Angew. Chem. Int. Ed. 2015; 54: 10341
- 30 Lu D. Wu H. Dai Y. Shi H. Shao X. Yang S. Yang J. Du P. Chem. Commun. 2016; 52: 7164
- 31 Lu D. Zhuang G. Wu H. Wang S. Yang S. Du P. Angew. Chem. Int. Ed. 2017; 56: 158
- 32 Pisula W. Feng XL. Müllen K. Chem. Mater. 2011; 23: 554
- 33 Wu J. Pisula W. Müllen K. Chem. Rev. 2007; 107: 718
- 34 Yamaguchi R. Hiroto S. Shinokubo H. Org. Lett. 2012; 14: 2472
- 35 Matsuno T. Kamata S. Hitosugi S. Isobe H. Chem. Sci. 2013; 4: 3179
- 36 Jiang HW. Tanaka T. Mori H. Park KH. Kim D. Osuka A. J. Am. Chem. Soc. 2015; 137: 2219
- 37 Takaba H. Omachi H. Yamamoto Y. Bouffard J. Itami K. Angew. Chem. Int. Ed. 2009; 48: 6112
- 38 Segawa Y. Fukazawa A. Matsuura S. Omachi H. Yamaguchi S. Irle S. Itami K. Org. Biomol. Chem. 2012; 10: 5979
- 39 Iwamoto T. Watanabe Y. Sadahiro T. Haino T. Yamago S. Angew. Chem. Int. Ed. 2011; 50: 8342