Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(11): 1327-1330
DOI: 10.1055/s-0036-1588743
DOI: 10.1055/s-0036-1588743
letter
Iron-Catalyzed Carbenoid Insertion into C(sp3)–H Bonds
Further Information
Publication History
Received: 15 December 2016
Accepted after revision: 19 February 2017
Publication Date:
08 March 2017 (online)
Abstract
An iron-catalyzed carbenoid insertion into C–H bonds of alkanes was developed with high activity (turnover numbers up to 690 in a gram-scale experiment) and chemoselectivity. This non-heme iron-catalyzed C(sp3)–H insertion reaction provides an efficient strategy for C–H functionalization.
Key words
iron catalysis - carbenoid insertion - C–H functionalization - chemoselectivity - diazo compounds - alkanesSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588743.
- Supporting Information
-
References and Notes
- 1a Handbook of C–H Transformations: Applications in Organic Synthesis. Dyker G. Wiley-VCH; Weinheim: 2005
- 1b C–H Activation . In Topics in Current Chemistry . Vol. 292. Yu J.-Q, Shi Z.-J. Springer-Verlag; Berlin/Heidelberg: 2010
- 1c Labinger JA, Bercaw JE. Nature 2002; 417: 507-507
- 1d Bergman RG. Nature 2007; 446: 391-391
- 1e Balcells D, Clot E, Eisenstein O. Chem. Rev. 2010; 110: 749-749
- 2a Davies HM. L, Beckwith RE. J. Chem. Rev. 2003; 103: 2861-2861
- 2b Davies HM. L, Manning JR. Nature 2008; 451: 417-417
- 2c Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704-704
- 2d Slattery CN, Ford A, Maguire AR. Tetrahedron 2010; 66: 6681-6681
- 2e Davies HM. L, Morton D. Chem. Soc. Rev. 2011; 40: 1857-1857
- 3a Doyle MP, van Oeveren A, Westrum LJ, Protopopova MN, Clayton TW. Jr. J. Am. Chem. Soc. 1991; 113: 8982-8982
- 3b Davies HM. L, Hansen T. J. Am. Chem. Soc. 1997; 119: 9075-9075
- 3c Saito H, Oishi H, Kitagaki S, Nakamura S, Anada M, Hashimoto S. Org. Lett. 2002; 4: 3887-3887
- 3d Thu H.-Y, Tong GS.-M, Huang J.-S, Chan SL.-F, Deng Q.-H, Che C.-M. Angew. Chem. Int. Ed. 2008; 47: 9747-9747
- 3e Chuprakov S, Malik JA, Zibinsky M, Fokin VV. J. Am. Chem. Soc. 2011; 133: 10352-10352
- 3f Qin C, Davies HM. L. J. Am. Chem. Soc. 2014; 136: 9792-9792
- 3g Liao K, Negretti S, Musaev DG, Bacsa J, Davies HM. L. Nature 2016; 533: 230-230
- 4a Suematsu H, Katsuki T. J. Am. Chem. Soc. 2009; 131: 14218-14218
- 4b Wang J.-C, Xu Z.-J, Guo Z, Deng Q.-H, Zhou C.-Y, Wan X.-L, Che C.-M. Chem. Commun. 2012; 48: 4299-4299
- 4c Anding BJ, Brgoch J, Miller GJ, Woo LK. Organometallics 2012; 31: 5586-5586
- 4d Owens CP, Varela-Álvarez A, Boyarskikh V, Musaev DG, Davies HM. L, Blakey SB. Chem. Sci. 2013; 4: 2590-2590
- 5a Iron Catalysis in Organic Chemistry: Reactions and Applications. Plietker B. Wiley-VCH; Weinheim: 2008
- 5b Iron Catalysis: Fundamentals and Applications. In Topics in Organometallic Chemistry. Vol. 33. Plietker B. Springer-Verlag; Berlin/Heidelberg: 2011
- 5c Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev. 2004; 104: 6217-6217
- 5d Enthaler S, Junge K, Beller M. Angew. Chem. Int. Ed. 2008; 47: 3317-3317
- 5e Nakamura E, Yoshikai N. J. Org. Chem. 2010; 75: 6061-6061
- 5f Gopalaiah K. Chem. Rev. 2013; 113: 3248-3248
- 5g Zhu S.-F, Zhou Q.-L. Nat. Sci. Rev. 2014; 1: 580-580
- 5h Bauer I, Knölker H.-J. Chem. Rev. 2015; 115: 3170-3170
- 5i Guo N, Zhu S.-F. Chin. J. Org. Chem. 2015; 35: 1383-1383
- 6a Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293-1293
- 6b Li Z, Cao L, Li C.-J. Angew. Chem. Int. Ed. 2007; 46: 6505-6505
- 6c Li Y.-Z, Li B.-J, Lu X.-Y, Lin S, Shi Z.-J. Angew. Chem. Int. Ed. 2009; 48: 3817-3817
- 6d Zhang S.-Y, Tu Y.-Q, Fan C.-A, Zhang F.-M, Shi L. Angew. Chem. Int. Ed. 2009; 48: 8761-8761
- 6e Yoshikai N, Mieczkowski A, Matsumoto A, Ilies L, Nakamura E. J. Am. Chem. Soc. 2010; 132: 5568-5568
- 6f Shang R, Ilies L, Matsumoto A, Nakamura E. J. Am. Chem. Soc. 2013; 135: 6030-6030
- 6g Ratnikov MO, Xu X, Doyle MP. J. Am. Chem. Soc. 2013; 135: 9475-9475
- 7a Mbuvi HM, Woo LK. Organometallics 2008; 27: 637-637
- 7b Li Y, Huang J.-S, Zhou Z.-Y, Che C.-M, You X.-Z. J. Am. Chem. Soc. 2002; 124: 13185-13185
- 8a Zhu S.-F, Cai Y, Mao H.-X, Xie J.-H, Zhou Q.-L. Nature Chem. 2010; 2: 546-546
- 8b Cai Y, Zhu S.-F, Wang G.-P, Zhou Q.-L. Adv. Synth. Catal. 2011; 353: 2939-2939
- 8c Shen J.-J, Zhu S.-F, Cai Y, Xu H, Xie X.-L, Zhou Q.-L. Angew. Chem. Int. Ed. 2014; 53: 13188-13188
- 8d Guo N, Hu M.-Y, Feng Y, Zhu S.-F. Org. Chem. Front. 2015; 2: 692-692
- 8e Yang J.-M, Cai Y, Zhu S.-F, Zhou Q.-L. Org. Biomol. Chem. 2016; 14: 5516-5516
- 9 Dimethyl 2,3-diphenylmaleate and dimethyl 2,3-diphenylfumarate.
- 10 The yields of 14a, 14b, 15a, and 15b were determined by 1H NMR spectroscopic analysis of the crude reaction mixture using pyrazine as the internal standard.
- 11 Davies HM. L, Hansen T, Churchill MR. J. Am. Chem. Soc. 2000; 122: 3063-3063
- 12 Methyl 2-cyclohexyl-2-phenylacetate (3aa); Typical Procedure: Powered Fe(ClO4)2·xH2O (1.0 mg, 0.003 mmol, 1 mol%), ligand 12 (1.0 mg, 0.0036 mmol, 1.2 mol%), and NaBArF (3.4 mg, 0.0036 mmol, 1.2 mol%) were introduced into an oven-dried Schlenk tube in an argon-filled glovebox. After CHCl3 (1 mL) was injected into the Schlenk tube, the solution was stirred at 25 °C under argon atmosphere for 4 h. Cyclohexane (2a; 3 mL) and methyl α-diazophenylacetate (1a; 52.9 mg, 0.3 mmol) were then successively introduced into the system. The resulting mixture was stirred at a bath temperature of 95 °C for 36 h. After concentration in vacuo, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, 30:1 v/v) to give methyl 2-cyclohexyl-2-phenylacetate (3aa) as a colorless oil. Yield: 57.2 mg (0.246 mmol, 82%). 1H NMR (400 MHz, CDCl3): δ = 7.39–7.20 (m, 5 H), 3.64 (s, 3 H), 3.22 (d, J = 10.7 Hz, 1 H), 2.08–1.94 (m, 1 H), 1.83–1.57 (m, 4 H), 1.33–0.99 (m, 5 H), 0.79–0.68 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ = 174.4, 137.8, 128.5, 128.4, 127.1, 58.8, 51.7, 41.0, 32.0, 30.4, 26.3, 26.0, 25.9.
For reviews on C–H functionalization, see:
For reviews on C–H insertion, see:
For selected examples of rhodium-catalyzed C–H insertion, see:
For selected examples of iridium-catalyzed C–H insertion, see:
For reviews on iron catalysis, see:
For a review on iron-catalyzed C–H functionalization, see:
For selected examples, see:
For an iron porphyrin-catalyzed C–H insertion, see:
For stoichiometric C–H insertion of iron porphyrin carbenes, see: