Subscribe to RSS
DOI: 10.1055/s-0036-1588722
2,6-Lactones as a New Entry in Stereoselective Glycosylations
Publication History
Received: 27 December 2016
Accepted after revision: 24 January 2017
Publication Date:
23 February 2017 (online)
Abstract
The advantages of glycosyl donors bearing a 2,6-lactone moiety in 1,2-cis-β-glycosylation reactions are discussed in the context of recent comprehension on the SN2–SN1 borderline. The 2,6-lactone structure increases the likelihood of the SN2-like reaction, analogous to 4,6-tethered structures or 2-O-electron-deficient substituents, which are known to mound the energetic barrier to SN1 reactions. Furthermore, the glycosyl cation generated from the 2,6-lactone donor seems to direct β-glycosides similar to the torsional and flipped cations generated from 4,6-tethered donors and mannuronate or 3,6-lactone donors, respectively. Overall, 2,6-lactones are suitable for use in 1,2-cis-β-glycosylations, and this novel class of donors is expected to help deepen our global understanding of glycosylation reactions.
1 Introduction
2 Stereoinversion (SN2-Like) Reactions
3 Conformational Control of Glycosyl Cations
4 Conclusions
-
References
- 1a Essentials of Glycobiology . Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME. Cold Spring Harbor Laboratory Press; Cold Spring Harbor: 2009. 2nd ed.
- 1b Glycoscience: Chemistry and Chemical Biology . Vol. 1-3. Fraser-Reid BO, Tatsuta K, Thiem J. Springer; Berlin: 2001
- 1c Carbohydrates in Chemistry and Biology . Vol. 1-4. Ernst B, Hart GW, Sinay P. Wiley-VCH; Weinheim: 2000
- 2a Nigudkar SS, Demchenko AV. Chem. Sci. 2015; 6: 2687-2687
- 2b Boltje TJ, Buskas T, Boons G.-J. Nat. Chem. 2009; 1: 611-611
- 2c Zhu X, Schmidt RR. Angew. Chem. Int. Ed. 2009; 48: 1900-1900
- 2d Toshima K, Sasaki K. In Comprehensive Glycoscience . Vol. 1. Kamerling JP, Boons G.-J, Lee YC, Suzuki A, Taniguchi N, Voragen AG. J. Elsevier; Oxford: 2007: 261
- 3 Nukada T, Berces A, Zgierski MZ, Whitfield DM. J. Am. Chem. Soc. 1998; 120: 13291-13291
- 4a El Ashry ES. H, Rashed N, Ibrahim ES. I. Curr. Org. Synth. 2005; 2: 175-175
- 4b Ishiwata A, Lee YJ, Ito Y. Org. Biomol. Chem. 2010; 8: 3596-3596
- 4c Codée JD. C, Walvoort MT. C, de Jong A.-R, Lodder G, Overkleeft HS, van der Marel GA. J. Carbohydr. Chem. 2011; 30: 438-438
- 5a Tanaka M, Nashida J, Takahashi D, Toshima K. Org. Lett. 2016; 18: 2288-2288
- 5b Pistorio SG, Yasomanee JP, Demchenko AV. Org. Lett. 2014; 16: 716-716
- 5c Fairbanks AJ. Synlett 2003; 1945-1945
- 5d Ito Y, Ogawa T. Angew. Chem., Int. Ed. Engl. 1994; 33: 1765-1765
- 5e Stork G, Kim G. J. Am. Chem. Soc. 1992; 114: 1087-1087
- 5f Barresi F, Hindsgaul O. J. Am. Chem. Soc. 1991; 113: 9376-9376
- 6 Elferink H, Mensink RA, White PB, Boltje TJ. Angew. Chem. Int. Ed. 2016; 55: 11217-11217
- 7a Satoh H, Hansen HS, Manabe S, van Gunsteren WF, Hunenberger PH. J. Chem. Theory Comput. 2010; 6: 1783-1783
- 7b Nukada T, Berces A, Whitfield DM. Carbohydr. Res. 2002; 337: 765-765
- 7c Hosoya T, Kosma P, Rosenau T. Carbohydr. Res. 2015; 401: 127-127
- 8 Adero PO, Furukawa T, Huang M, Mukherjee D, Retailleau P, Bohé L, Crich D. J. Am. Chem. Soc. 2015; 137: 10336-10336
- 9 Paulsen H, Lockhoff O. Chem. Ber. 1981; 114: 3102-3102
- 10 Gorin PA. J, Perlin AS. Can. J. Chem. 1961; 39: 2474-2474
- 11 Crich D, Vinod AU, Picione J. J. Org. Chem. 2003; 68: 8453-8453
- 12a Aubry S, Sasaki K, Sharma I, Crich D. Top. Curr. Chem. 2011; 301: 141-141
- 12b Crich D. Acc. Chem. Res. 2010; 43: 1144-1144
- 12c Crich D, Sun S. J. Am. Chem. Soc. 1998; 120: 435-435
- 12d Crich D, Sun S. J. Org. Chem. 1997; 62: 1198-1198
- 12e Crich D, Sun S. J. Am. Chem. Soc. 1997; 119: 11217-11217
- 12f Crich D, Sun S. J. Org. Chem. 1996; 61: 4506-4506
- 13a Andrews CW, Rodebaugh R, Fraser-Reid B. J. Org. Chem. 1996; 61: 5280-5280
- 13b Fraser-Reid B, Wu Z, Andrews CW, Skowronski E, Bowen JP. J. Am. Chem. Soc. 1991; 113: 1434-1434
- 14 Jensen HH, Nordstrom LU, Bols M. J. Am. Chem. Soc. 2004; 126: 9205-9205
- 15a Heuckendorff M, Bendix J, Pedersen CM, Bols M. Org. Lett. 2014; 16: 1116-1116
- 15b Crich D, Smith M. J. Am. Chem. Soc. 2002; 124: 8867-8867
- 16a Kim KS, Baburao Fulse D, Baek JY, Lee B.-Y, Jeon HB. J. Am. Chem. Soc. 2008; 130: 8537-8537
- 16b Baek JY, Choi TJ, Jeon HB, Kim KS. Angew. Chem. Int. Ed. 2006; 45: 7436-7436
- 16c Codee JD. C, Hossain LH, Seeberger PH. Org. Lett. 2005; 7: 3251-3251
- 16d Kim KS, Kim JH, Lee YJ, Lee YJ, Park J. J. Am. Chem. Soc. 2001; 123: 8477-8477
- 17 Weingart R, Schmidt RR. Tetrahedron Lett. 2000; 41: 8753-8753
- 18 Tsuda T, Sato S, Nakamura S, Hashimoto S. Heterocycles 2003; 59: 509-509
- 19a El Ashry ES. H, Schuerch C. Carbohydr. Res. 1982; 105: 33-33
- 19b Srivastava VK, Schuerch C. J. Org. Chem. 1981; 46: 1121-1121
- 19c Srivastava VK, Schuerch C. Carbohydr. Res. 1980; 79: C13-C13
- 19d El Ashry ES. H, Schuerch C. Bull. Chem. Soc. Jpn. 1986; 59: 1581-1581
- 20a Crich D, Hutton TK, Banerjee A, Jayalath P, Picione J. Tetrahedron: Asymmetry 2005; 16: 105-105
- 20b Webster KT, Eby R, Schuerch C. Carbohydr. Res. 1983; 123: 335-335
- 20c Srivastava VK, Schuerch C. Carbohydr. Res. 1982; 100: 411-411
- 21 Abdel-Rahman AA. H, Jonke S, El Ashry ES. H, Schmidt RR. Angew. Chem. Int. Ed. 2002; 41: 2972-2972
- 22 Frihed TG, Bols M, Pedersen CM. Chem. Rev. 2015; 115: 4963-4963
- 23 Hashimoto Y, Tanikawa S, Saito R, Sasaki K. J. Am. Chem. Soc. 2016; 138: 14840-14840
- 24 van den Bos LJ, Litjens RE. J. N, van den Berg RJ. B. H. N, Overkleeft HS, van der Marel GA. Org. Lett. 2005; 7: 2007-2007
- 25 Oka N, Kajino R, Takeuchi K, Nagakawa H, Ando K. J. Org. Chem. 2014; 79: 7656-7656
- 26 Gervay-Hague J. Acc. Chem. Res. 2016; 49: 35-35
- 27 Peng P, Schmidt RR. J. Am. Chem. Soc. 2015; 137: 12653-12653
- 28a Kimura T, Eto T, Takahashi D, Toshima K. Org. Lett. 2016; 18: 3190-3190
- 28b Geng Y, Kumar A, Faidallah HM, Albar HA, Mhkalid IA, Schmidt RR. Angew. Chem. Int. Ed. 2013; 52: 10089-10089
- 28c Balmond EI, Coe DM, Galan MC, McGarrigle EM. Angew. Chem. Int. Ed. 2012; 51: 9152-9152
- 29 Walvoort MT. C, Dinkelaar J, van den Bos LJ, Lodder G, Overkleeft HS, Codee JD. C, van der Marel GA. Carbohydr. Res. 2010; 345: 1252-1252
- 30 Martin A, Arda A, Désiré J, Martin-Mingot A, Probst N, Sinaÿ P, Jiménez-Barbero J, Thibaudeau S, Blériot Y. Nat. Chem. 2016; 8: 186-186
- 31 Ayala L, Lucero CG, Romero JA. C, Tabacco SA, Woerpel KA. J. Am. Chem. Soc. 2003; 125: 15521-15521
- 32 Schumann B, Parameswarappa SG, Lisboa MP, Kottari N, Guidetti F, Pereira CL, Seeberger PH. Angew. Chem. Int. Ed. 2016; 55: 14431-14431
- 33a van der Vorm S, Hansen T, Overkleeft HS, van der Marel GA, Codee JD. Chem. Sci. 2017; 10.1039/c6sc04638j-10.1039/c6sc04638j
- 33b Beaver MG, Woerpel KA. J. Org. Chem. 2010; 75: 1107-1107
- 33c Krumper JR, Salamant WA, Woerpel KA. Org. Lett. 2008; 10: 4907-4907
- 34 Deslongchamps P. Stereoelectronic Effects in Organic Chemistry. Pergamon Press; Oxford: 1983. 1st ed., Vol. 1
- 35a Shenoy SR, Smith DM, Woerpel KA. J. Am. Chem. Soc. 2006; 128: 8671-8671
- 35b Chamberland S, Ziller JW, Woerpel KA. J. Am. Chem. Soc. 2005; 127: 5322-5322
- 35c Romero JA. C, Tabacco SA, Woerpel KA. J. Am. Chem. Soc. 2000; 122: 168-168
- 36 Huang M, Retailleau P, Bohe L, Crich D. J. Am. Chem. Soc. 2012; 134: 14746-14746
- 37 Zhu Y, Yu B. Chem. Eur. J. 2015; 21: 8771-8771
- 38 Codée JD. C, van den Bos LJ, de Jong A.-R, Dinkelaar J, Lodder G, Overkleeft HS, van der Marel GA. J. Org. Chem. 2009; 74: 38-38