Synlett 2017; 28(10): 1121-1126
DOI: 10.1055/s-0036-1588722
synpacts
© Georg Thieme Verlag Stuttgart · New York

2,6-Lactones as a New Entry in Stereoselective Glycosylations

Kaname Sasaki*
Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan   Email: kaname.sasaki@sci.toho-u.ac.jp
,
Yusuke Hashimoto
Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan   Email: kaname.sasaki@sci.toho-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 27 December 2016

Accepted after revision: 24 January 2017

Publication Date:
23 February 2017 (online)


Abstract

The advantages of glycosyl donors bearing a 2,6-lactone moiety in 1,2-cis-β-glycosylation reactions are discussed in the context of recent comprehension on the SN2–SN1 borderline. The 2,6-lactone structure increases the likelihood of the SN2-like reaction, analogous to 4,6-tethered structures or 2-O-electron-deficient substituents, which are known to mound the energetic barrier to SN1 reactions. Furthermore, the glycosyl cation generated from the 2,6-lactone donor seems to direct β-glycosides similar to the torsional and flipped cations generated from 4,6-tethered donors and mannuronate or 3,6-lactone donors, respectively. Overall, 2,6-lactones are suitable for use in 1,2-cis-β-glycosylations, and this novel class of donors is expected to help deepen our global understanding of glycosylation reactions.

1 Introduction

2 Stereoinversion (SN2-Like) Reactions

3 Conformational Control of Glycosyl Cations

4 Conclusions

 
  • References

    • 1a Essentials of Glycobiology . Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME. Cold Spring Harbor Laboratory Press; Cold Spring Harbor: 2009. 2nd ed.
    • 1b Glycoscience: Chemistry and Chemical Biology . Vol. 1-3. Fraser-Reid BO, Tatsuta K, Thiem J. Springer; Berlin: 2001
    • 1c Carbohydrates in Chemistry and Biology . Vol. 1-4. Ernst B, Hart GW, Sinay P. Wiley-VCH; Weinheim: 2000
    • 2a Nigudkar SS, Demchenko AV. Chem. Sci. 2015; 6: 2687-2687
    • 2b Boltje TJ, Buskas T, Boons G.-J. Nat. Chem. 2009; 1: 611-611
    • 2c Zhu X, Schmidt RR. Angew. Chem. Int. Ed. 2009; 48: 1900-1900
    • 2d Toshima K, Sasaki K. In Comprehensive Glycoscience . Vol. 1. Kamerling JP, Boons G.-J, Lee YC, Suzuki A, Taniguchi N, Voragen AG. J. Elsevier; Oxford: 2007: 261
  • 3 Nukada T, Berces A, Zgierski MZ, Whitfield DM. J. Am. Chem. Soc. 1998; 120: 13291-13291
    • 4a El Ashry ES. H, Rashed N, Ibrahim ES. I. Curr. Org. Synth. 2005; 2: 175-175
    • 4b Ishiwata A, Lee YJ, Ito Y. Org. Biomol. Chem. 2010; 8: 3596-3596
    • 4c Codée JD. C, Walvoort MT. C, de Jong A.-R, Lodder G, Overkleeft HS, van der Marel GA. J. Carbohydr. Chem. 2011; 30: 438-438
    • 5a Tanaka M, Nashida J, Takahashi D, Toshima K. Org. Lett. 2016; 18: 2288-2288
    • 5b Pistorio SG, Yasomanee JP, Demchenko AV. Org. Lett. 2014; 16: 716-716
    • 5c Fairbanks AJ. Synlett 2003; 1945-1945
    • 5d Ito Y, Ogawa T. Angew. Chem., Int. Ed. Engl. 1994; 33: 1765-1765
    • 5e Stork G, Kim G. J. Am. Chem. Soc. 1992; 114: 1087-1087
    • 5f Barresi F, Hindsgaul O. J. Am. Chem. Soc. 1991; 113: 9376-9376
  • 6 Elferink H, Mensink RA, White PB, Boltje TJ. Angew. Chem. Int. Ed. 2016; 55: 11217-11217
    • 7a Satoh H, Hansen HS, Manabe S, van Gunsteren WF, Hunenberger PH. J. Chem. Theory Comput. 2010; 6: 1783-1783
    • 7b Nukada T, Berces A, Whitfield DM. Carbohydr. Res. 2002; 337: 765-765
    • 7c Hosoya T, Kosma P, Rosenau T. Carbohydr. Res. 2015; 401: 127-127
  • 8 Adero PO, Furukawa T, Huang M, Mukherjee D, Retailleau P, Bohé L, Crich D. J. Am. Chem. Soc. 2015; 137: 10336-10336
  • 9 Paulsen H, Lockhoff O. Chem. Ber. 1981; 114: 3102-3102
  • 10 Gorin PA. J, Perlin AS. Can. J. Chem. 1961; 39: 2474-2474
  • 11 Crich D, Vinod AU, Picione J. J. Org. Chem. 2003; 68: 8453-8453
    • 12a Aubry S, Sasaki K, Sharma I, Crich D. Top. Curr. Chem. 2011; 301: 141-141
    • 12b Crich D. Acc. Chem. Res. 2010; 43: 1144-1144
    • 12c Crich D, Sun S. J. Am. Chem. Soc. 1998; 120: 435-435
    • 12d Crich D, Sun S. J. Org. Chem. 1997; 62: 1198-1198
    • 12e Crich D, Sun S. J. Am. Chem. Soc. 1997; 119: 11217-11217
    • 12f Crich D, Sun S. J. Org. Chem. 1996; 61: 4506-4506
    • 13a Andrews CW, Rodebaugh R, Fraser-Reid B. J. Org. Chem. 1996; 61: 5280-5280
    • 13b Fraser-Reid B, Wu Z, Andrews CW, Skowronski E, Bowen JP. J. Am. Chem. Soc. 1991; 113: 1434-1434
  • 14 Jensen HH, Nordstrom LU, Bols M. J. Am. Chem. Soc. 2004; 126: 9205-9205
    • 15a Heuckendorff M, Bendix J, Pedersen CM, Bols M. Org. Lett. 2014; 16: 1116-1116
    • 15b Crich D, Smith M. J. Am. Chem. Soc. 2002; 124: 8867-8867
    • 16a Kim KS, Baburao Fulse D, Baek JY, Lee B.-Y, Jeon HB. J. Am. Chem. Soc. 2008; 130: 8537-8537
    • 16b Baek JY, Choi TJ, Jeon HB, Kim KS. Angew. Chem. Int. Ed. 2006; 45: 7436-7436
    • 16c Codee JD. C, Hossain LH, Seeberger PH. Org. Lett. 2005; 7: 3251-3251
    • 16d Kim KS, Kim JH, Lee YJ, Lee YJ, Park J. J. Am. Chem. Soc. 2001; 123: 8477-8477
  • 17 Weingart R, Schmidt RR. Tetrahedron Lett. 2000; 41: 8753-8753
  • 18 Tsuda T, Sato S, Nakamura S, Hashimoto S. Heterocycles 2003; 59: 509-509
    • 19a El Ashry ES. H, Schuerch C. Carbohydr. Res. 1982; 105: 33-33
    • 19b Srivastava VK, Schuerch C. J. Org. Chem. 1981; 46: 1121-1121
    • 19c Srivastava VK, Schuerch C. Carbohydr. Res. 1980; 79: C13-C13
    • 19d El Ashry ES. H, Schuerch C. Bull. Chem. Soc. Jpn. 1986; 59: 1581-1581
    • 20a Crich D, Hutton TK, Banerjee A, Jayalath P, Picione J. Tetrahedron: Asymmetry 2005; 16: 105-105
    • 20b Webster KT, Eby R, Schuerch C. Carbohydr. Res. 1983; 123: 335-335
    • 20c Srivastava VK, Schuerch C. Carbohydr. Res. 1982; 100: 411-411
  • 21 Abdel-Rahman AA. H, Jonke S, El Ashry ES. H, Schmidt RR. Angew. Chem. Int. Ed. 2002; 41: 2972-2972
  • 22 Frihed TG, Bols M, Pedersen CM. Chem. Rev. 2015; 115: 4963-4963
  • 23 Hashimoto Y, Tanikawa S, Saito R, Sasaki K. J. Am. Chem. Soc. 2016; 138: 14840-14840
  • 24 van den Bos LJ, Litjens RE. J. N, van den Berg RJ. B. H. N, Overkleeft HS, van der Marel GA. Org. Lett. 2005; 7: 2007-2007
  • 25 Oka N, Kajino R, Takeuchi K, Nagakawa H, Ando K. J. Org. Chem. 2014; 79: 7656-7656
  • 26 Gervay-Hague J. Acc. Chem. Res. 2016; 49: 35-35
  • 27 Peng P, Schmidt RR. J. Am. Chem. Soc. 2015; 137: 12653-12653
    • 28a Kimura T, Eto T, Takahashi D, Toshima K. Org. Lett. 2016; 18: 3190-3190
    • 28b Geng Y, Kumar A, Faidallah HM, Albar HA, Mhkalid IA, Schmidt RR. Angew. Chem. Int. Ed. 2013; 52: 10089-10089
    • 28c Balmond EI, Coe DM, Galan MC, McGarrigle EM. Angew. Chem. Int. Ed. 2012; 51: 9152-9152
  • 29 Walvoort MT. C, Dinkelaar J, van den Bos LJ, Lodder G, Overkleeft HS, Codee JD. C, van der Marel GA. Carbohydr. Res. 2010; 345: 1252-1252
  • 30 Martin A, Arda A, Désiré J, Martin-Mingot A, Probst N, Sinaÿ P, Jiménez-Barbero J, Thibaudeau S, Blériot Y. Nat. Chem. 2016; 8: 186-186
  • 31 Ayala L, Lucero CG, Romero JA. C, Tabacco SA, Woerpel KA. J. Am. Chem. Soc. 2003; 125: 15521-15521
  • 32 Schumann B, Parameswarappa SG, Lisboa MP, Kottari N, Guidetti F, Pereira CL, Seeberger PH. Angew. Chem. Int. Ed. 2016; 55: 14431-14431
    • 33a van der Vorm S, Hansen T, Overkleeft HS, van der Marel GA, Codee JD. Chem. Sci. 2017; 10.1039/c6sc04638j-10.1039/c6sc04638j
    • 33b Beaver MG, Woerpel KA. J. Org. Chem. 2010; 75: 1107-1107
    • 33c Krumper JR, Salamant WA, Woerpel KA. Org. Lett. 2008; 10: 4907-4907
  • 34 Deslongchamps P. Stereoelectronic Effects in Organic Chemistry. Pergamon Press; Oxford: 1983. 1st ed., Vol. 1
    • 35a Shenoy SR, Smith DM, Woerpel KA. J. Am. Chem. Soc. 2006; 128: 8671-8671
    • 35b Chamberland S, Ziller JW, Woerpel KA. J. Am. Chem. Soc. 2005; 127: 5322-5322
    • 35c Romero JA. C, Tabacco SA, Woerpel KA. J. Am. Chem. Soc. 2000; 122: 168-168
  • 36 Huang M, Retailleau P, Bohe L, Crich D. J. Am. Chem. Soc. 2012; 134: 14746-14746
  • 37 Zhu Y, Yu B. Chem. Eur. J. 2015; 21: 8771-8771
  • 38 Codée JD. C, van den Bos LJ, de Jong A.-R, Dinkelaar J, Lodder G, Overkleeft HS, van der Marel GA. J. Org. Chem. 2009; 74: 38-38