Synlett 2017; 28(11): 1300-1304
DOI: 10.1055/s-0036-1588718
cluster
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Optically Active Oxazolines by an Organocatalytic Isocyanoacetate Aldol Reaction with α-Keto Esters

Fei Wang
Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, P. R. of China   Email: chenja@pkusz.edu.cn   Email: huangyong@pkusz.edu.cn
,
Jiean Chen*
Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, P. R. of China   Email: chenja@pkusz.edu.cn   Email: huangyong@pkusz.edu.cn
,
Yong Huang*
Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, P. R. of China   Email: chenja@pkusz.edu.cn   Email: huangyong@pkusz.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 27 December 2016

Accepted after revision: 25 January 2017

Publication Date:
23 February 2017 (online)


Abstract

An enantioselective [3+2] cyclization is reported for the construction of a chiral oxazoline skeleton in moderate yield and up to 97% ee. The reactivity and stereochemical discrimination originate from the noncovalent interaction and orientation of a bifunctional catalyst. The novel combination of an α-keto ester and an α-isocyanoacetate establishes an oxazoline which could be a potential chiral ligand for metal-mediated catalysis, and also could be easily converted into an optically active β-hydroxy-α-amino acid.

Supporting Information

 
  • References and Notes

  • 1 For selected perspective, see: Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257-10257
    • 2a Wipf P. Chem. Rev. 1995; 95: 2115-2115
    • 2b Michael JP, Pattenden G. Angew. Chem. Int. Ed. 1993; 32: 1-1
    • 2c Foster MP, Concepción GP, Caraan GB, Ireland CM. J. Org. Chem. 1992; 57: 6671-6671
    • 2d Aguilar E, Meyer AI. Tetrahedron Lett. 1994; 35: 2477-2477
    • 2e Downing SV, Aguilar E, Meyers AI. J. Org. Chem. 1999; 64: 826-826

      For selected examples of construction of chiral analogues of pyrrole, see:
    • 3a Guo C, Xue MX, Zhu MK, Gong LZ. Angew. Chem. Int. Ed. 2008; 47: 3414-3414
    • 3b Song J, Guo C, Chen PH, Yu J, Luo SW, Gong LZ. Chem. Eur. J. 2011; 17: 7786-7786
    • 3c Wang LL, Bai JF, Peng L, Qi LW, Jia LN, Guo YL, Luo XY, Xu XY, Wang LX. Chem. Commun. 2012; 48: 5175-5175
    • 3d Zhao MX, Wei DK, Ji FH, Zhao XL, Shi M. Chem. Asian J. 2012; 7: 2777-2777
  • 4 For an example of the construction of chiral analogues of imidazole, see: Shao PL, Liao JY, Ho YA, Zhao Y. Angew. Chem. Int. Ed. 2014; 53: 5435-5435

    • For the construction of chiral analogues of oxazoline mediated by a chiral Au(I) complex, see:
    • 5a Ito Y, Sawamura M, Hayashi T. J. Am. Chem. Soc. 1986; 108: 6405-6405
    • 5b Ito Y, Sawamura M, Hayashl T. Tetrahedron Lett. 1988; 29: 239-239
    • 5c Ito Y, Sawamura H, Hamashima H, Eaura T, Hayashi T. Tetrahedron Lett. 1989; 30: 4681-4681
    • 5d Pastor SD, Togni A. J. Am. Chem. Soc. 1989; 111: 2333-2333
    • 5e Togni A, Pator SD. J. Org. Chem. 1990; 55: 1649-1649
    • 5f Hayashi T, Sawamura M, Ito Y. Tetrahedron 1992; 48: 1999-1999
    • 5g Sawamura M, Nakayama Y, Kato T, Ito Y. J. Org. Chem. 1995; 60: 1727-1727

      For Ag(I)-mediated systems, see:
    • 6a Sawamura M, Hamashima H, Ito Y. J. Org. Chem. 1990; 55: 5935-5935
    • 6b Hayashi T, Uozumi Y, Yamazaki A, Sawamura M, Hamashima H, Ito T. Tetrahedron Lett. 1991; 32: 2799-2799

    • For Pd(II)-mediated system, see:
    • 6c Longmire JM, Zhang X, Shang M. Organometallics 1998; 17: 4374-4374
    • 6d Motoyama Y, Kawakami H, Shimozono K, Aoki K, Nishiyama H. Organometallics 2002; 21: 3408-3408
    • 6e Fossey JS, Richards CJ. Organometallics 2002; 21: 5259-5259
    • 6f Giménez R, Swager TM. J. Mol. Catal. A: Chem. 2001; 166: 265-265

    • For Pt(II)-mediated system, see:
    • 6g Horne DA, Yakusijin K, Büchi G. Heterocycles 1994; 39: 139-139
    • 6h Gorla F, Togni A, Venazi LM, Albinati A, Lianza F. Organometallics 1994; 13: 1607-1607
  • 7 Sladojevich F, Trabocchi A, Guarna A, Dixon DJ. J. Am. Chem. Soc. 2011; 133: 1710-1710
  • 8 Xue MX, Guo C, Gong LZ. Synlett 2009; 2191-2191
  • 9 Soloshonok VA, Kacharov AD, Avilov DV, Ishikawa K, Nagashima N, Hayash T. J. Org. Chem. 1997; 62: 3470-3470

    • For selected reviews of bifunctional organocatalysis, see:
    • 10a Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713-5713
    • 10b Dondoni A, Massi A. Angew. Chem. Int. Ed. 2008; 47: 4638-4638
    • 10c Melchiorre P, Marigo M, Carlone A, Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6318-6318
    • 10d Giacalone F, Gruttadauria M, Agrigento P, Noto R. Chem. Soc. Rev. 2012; 41: 2406-2406

      For selected examples of H-bonding catalysis, see:
    • 11a Sigman MS, Jacobsen EN. J. Am. Chem. Soc. 1998; 120: 4901-4901
    • 11b Iwabuchi Y, Nakatani M, Yokoyama N, Hatakeyama S. J. Am. Chem. Soc. 1999; 121: 10219-10219
    • 11c List B, Lerner RA, Barbas III CF. J. Am. Chem. Soc. 2000; 122: 2395-2395
    • 11d Kita T, Georgieva A, Hashimoto Y, Nakata T, Nagasawa K. Angew. Chem. Int. Ed. 2002; 41: 2832-2832
    • 11e Huang Y, Unni AK, Thadani AN, Rawal VH. Nature (London) 2003; 424: 146-146
    • 11f Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356-5356
    • 11g Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566-1566
    • 11h Hoffmann S, Seayad AM, List B. Angew. Chem. Int. Ed. 2005; 44: 7424-7424
    • 11i Bauer A, Westkämper F, Grimme S, Bach T. Nature (London) 2005; 436: 1139-1139
    • 11j Matsui K, Takizawa S, Sasai H. J. Am. Chem. Soc. 2005; 127: 3680-3680
    • 11k Storer RI, Carrera DE, Ni Y, MacMillan DW. C. J. Am. Chem. Soc. 2006; 128: 84-84
    • 11l Nakashima D, Yamamoto H. J. Am. Chem. Soc. 2006; 128: 9626-9626
    • 11m Hashimoto T, Maruoka K. J. Am. Chem. Soc. 2007; 129: 10054-10054
    • 11n Uraguchi D, Sakaki S, Ooi T. J. Am. Chem. Soc. 2007; 129: 12392-12392
    • 11o Ishihara K, Nakano K. J. Am. Chem. Soc. 2007; 129: 8930-8930
    • 11p Kawabata T, Muramatsu W, Nishio T, Shibata T, Schedel H. J. Am. Chem. Soc. 2007; 129: 12890-12890
    • 11q Hayashi Y, Itoh T, Aratake S, Ishikawa H. Angew. Chem. Int. Ed. 2008; 47: 2082-2082
    • 11r For a review, see: Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520-1520

      For selected reviews of thiourea/amine-type catalysts, see:
    • 12a Chen Y, McDaid P, Deng L. Chem. Rev. 2003; 103: 2965-2965
    • 12b Tian S.-K, Chen Y, Hang J, Tang L, McDaid P, Deng L. Acc. Chem. Res. 2004; 37: 621-621
    • 12c Palomo C, Oiarbide M, López R. Chem. Soc. Rev. 2009; 38: 632-632

    • For selected examples, see:
    • 12d Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672-12672
    • 12e Calter MA, Orr RK, Song W. Org. Lett. 2003; 5: 4745-4745
    • 12f Li H, Wang Y, Tang L, Wu F, Liu X, Guo C, Foxman BM, Deng L. Angew. Chem. Int. Ed. 2005; 44: 105-105
    • 12g Poulsen TB, Alemparte C, Saaby S, Bella M, Jorgensen KA. Angew. Chem. Int. Ed. 2005; 44: 2896-2896
    • 12h Okino T, Hoashi Y, Furukawa T, Xu X, Takemoto Y. J. Am. Chem. Soc. 2005; 127: 119-119
    • 12i Vakulya B, Varga S, Csámpai A, Soós T. Org. Lett. 2005; 7: 1967-1967
    • 12j Hamza A, Schubert G, Soós T, Pápai I. J. Am. Chem. Soc. 2006; 128: 13151-13151
    • 12k Connon SJ. Chem. Eur. J. 2006; 12: 5418-5418
    • 12l Kojima S, Suzuki M, Watanabe A, Ohkata K. Tetrahedron Lett. 2006; 47: 9061-9061
    • 12m Johansson CC. C, Bremeyer N, Ley SV, Owen DR, Smith SC, Gaunt MJ. Angew. Chem. Int. Ed. 2006; 45: 6024-6024
    • 12n Bartoli G, Bosco M, Carlone A, Cavalli A, Locatelli M, Mazzanti A, Ricci P, Sambri L, Melchiorre P. Angew. Chem. Int. Ed. 2006; 45: 4966-4966
    • 12o Wang Y, Liu X, Deng L. J. Am. Chem. Soc. 2006; 128: 3928-3928
    • 12p Li H, Wang B, Deng L. J. Am. Chem. Soc. 2006; 128: 732-732
    • 12q Shi M, Lei ZY, Zhao MX, Shi JW. Tetrahedron Lett. 2007; 48: 5743-5743
    • 12r Ogawa S, Shibata N, Inagaki J, Nakamura S, Toru T, Shiro M. Angew. Chem. Int. Ed. 2007; 46: 8666-8666
    • 12s Xu X, Wang K, Nelson SG. J. Am. Chem. Soc. 2007; 129: 11690-11690
    • 12t Cheng L, Liu L, Jia H, Wang D, Chen YJ. J. Org. Chem. 2009; 74: 4650-4650
    • 12u Liu Y, Sun B, Wang B, Wakem M, Deng L. J. Am. Chem. Soc. 2009; 131: 418-418
  • 13 Aliphatic α-keto esters such as ethyl 2-cyclohexyl-2-oxoacetate were also used, but only gave 59% ee.
  • 14 See the Supporting Information for details.

    • For selected examples of the interaction pattern between the thiourea moieties and α-keto esters, see:
    • 15a Wang F, Liu XH, Cui X, Xiong Y, Zhou X, Feng XM. Chem. Eur. J. 2009; 15: 589-589
    • 15b Li WY, Huang DF, Lv YJ. Org. Biomol. Chem. 2013; 11: 7497-7497
  • 16 General Procedure for the Synthesis of Chiral Oxazoline: Phenylglyoxylate (1; 0.1 mmol), tert-butyl isocyanoacetate (2d; 11.9 mg, 0.12 mmol) and bifunctional catalyst 3c (5.9 mg, 0.01 mmol) were stirred in toluene (0.5 mL) at 26 °C for 24 h. The mixture was separated by silica gel chromatography (10% EtOAc/petroleum ether) and gave product 4. Analysis data for compound 4a: 1H NMR (400 MHz, CDCl3): δ = 1.20–1.24 (m, 3 H), 1.52 (s, 9 H), 4.11–4.24 (m, 2 H), 4.88 (d, J = 2.0 Hz, 1 H), 7.14 (d, J = 2.0 Hz, 1 H), 7.31–7.56 (m, 2 H), 7.58–7.60 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 14.0, 28.0, 62.5, 79.7, 83.0, 89.4, 125.3, 129.0, 138.7, 155.5, 168.2, 168.6. HPLC (Chiralcel IB, hexane/i-PrOH = 95:5, flow rate: 1.0 mL/min, λ = 210 nm): t R (major) = 18.08 min, t R (minor) = 20.22 min. ESI–HRMS: m/z [M + H] calcd for C17H21NO5: 320.1498; found: 320.1492.