Synlett 2017; 28(04): 402-414
DOI: 10.1055/s-0036-1588665
account
© Georg Thieme Verlag Stuttgart · New York

Progress on Chiral NAD(P)H Model Compounds

Cui-Bing Bai
a   Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. of China
,
Nai-Xing Wang*
a   Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. of China
,
Yalan Xing*
b   Department of Chemistry, William Paterson University of New Jersey, 300 Pompton Road, Wayne, New Jersey 07470, USA   Email: nxwang@mail.ipc.ac.cn   Email: xingy@wpunj.edu
,
Xing-Wang Lan
a   Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 01 October 2016

Accepted after revision: 09 November 2016

Publication Date:
12 December 2016 (online)


Abstract

NAD(P)H and NAD+ have a significant role in biochemistry, and many NAD(P)H models received particular attention. Research in NADH models mainly focuses on asymmetric reduction and life sciences. Over the past few decades, a particularly large number of new chiral NAD(P)H models have appeared, and there have been significant developments in this area. We summarized advanced research in chiral NAD(P)H models in this paper. These models not only show very good performance in asymmetric reduction, but also have excellent fluorescence features. In addition, we present a discussion about some recent studies on the asymmetric reduction of NAD(P)H-dependent dehydrogenase, and we open a new door on research into NAD(P)H models. At last, some advances focused on the fluorescence phenomenon of some chiral NAD(P)H models have also been summarized.

1 Introduction

2 NAD(P)H Models with Symmetric Structure

2.1 Chiral NAD(P)H Models with C 1 Symmetry

2.2 Chiral NAD(P)H Models with C 2 Symmetry

2.3 Chiral NAD(P)H Models with C 3 Symmetry

3 Symmetric Reduction

3.1 Effect of the Substituents of Dihydronicotinamide

3.2 Effect of the C-4 Substituent of Dihydropyridine

3.3 Special Structures

3.4 Applying Dehydrogenase to Biocatalytic Asymmetric Reductions with NADPH

4 Fluorescence Properties

5 Conclusion

 
  • References

  • 1 Tsukiji S, Pattnaik SB, Suga H. J. Am. Chem. Soc. 2004; 126: 5044
  • 2 Oppelt KT, Gasiorowski J, Egbe DA. M, Kollender JP, Himmelsbach M, Hassel AW, Sariciftci NS, Knör G. J. Am. Chem. Soc. 2014; 136: 12721
  • 3 Russell TR, Demeler B, Tu SC. Biochemistry 2004; 43: 1580
  • 4 Russell TR, Tu SC. Biochemistry 2004; 43: 12887
  • 5 Wang N.-X, Zhao J. Adv. Synth. Catal. 2009; 351: 3045
  • 6 Zhao J, Wang N.-X, Wang W.-W, Liu Y.-H, Li L, Wang G.-X, Yu J.-L, Tang X.-L. Molecules 2007; 12: 979
  • 7 Wang N.-X, Zhao J. Synlett 2007; 2785
  • 8 Yadav RK, Oh GH, Park NJ, Kumar A, Kong KJ, Baeg JO. J. Am. Chem. Soc. 2014; 136: 16728
  • 9 Mikata Y, Mizukami K, Hayashi K, Matsumoto S, Yano S, Yamazaki N, Ohno A. J. Org. Chem. 2001; 66: 1590
  • 10 Fukuzumi S, Yuasa J, Suenobu T. J. Am. Chem. Soc. 2002; 124: 12566
  • 11 Tsukiji S, Pattnaik SB, Suga H. J. Am. Chem. Soc. 2004; 126: 5044
  • 12 Gebicki J, Marcinek A, Zielonka J. Acc. Chem. Res. 2004; 37: 379
  • 13 Nelson KJ, Rajagopalan KV. Biochemistry 2004; 43: 11226
  • 14 Campbell MK. Biochemistry . Saunders College Publishing; Philadelphia: 1995. 2nd ed., 28
  • 15 Skog K, Wennerström O. Tetrahedron 1994; 50: 8227
  • 16 Adams MJ, Ford C, Koekoek R, Lentz JP. J, Mepherson JA, Rossmann MG, Smiley IE, Sehevitz RW, Wonacott AJ. Nature 1970; 227: 1098
  • 17 Donkersloot MC. A, Buck HM. J. Am. Chem. Soc. 1981; 103: 6554
  • 18 Burgess VA, Davies SG, Skerlj RT. Tetrahedron: Asymmetry 1991; 2: 299
  • 19 Ohnishi Y, Kagami M, Ohno A. J. Am. Chem. Soc. 1975; 97: 4766
  • 20 Ohnishi Y, Kagami M, Ohno A. Tetrahedron Lett. 1975; 16: 2437
  • 21 Ohnishi Y, Numakunai T, Ohno A. Tetrahedron Lett. 1975; 16: 3813
  • 22 Burgess VA, Davies SG, Skerlj RT. Tetrahedron: Asymmetry 1991; 2: 299
  • 23 Matsuda T, Yamanaka R, Nakamura K. Tetrahedron: Asymmetry 2009; 20: 513
  • 24 Cirilli M, Zheng R, Scapin G, Blanchard JS. Biochemistry 2003; 42: 10644
  • 25 Ohno A, Kimura T, Yamamoto H, Kim SG, Oka S, Ohnishi Y. Bull. Chem. Soc. Jpn. 1977; 50: 1535
  • 26 Ohno A, Kimura T, Kim SG, Yamamoto H, Oka S, Ohnishi Y. Bull. Chem. Soc. Jpn. 1977; 6: 21
  • 27 De Vries JG, Kellogg RM. J. Am. Chem. Soc. 1979; 101: 2759
  • 28 Jouin P, TroostwiJk CB, Kellogg RM. J. Am. Chem. Soc. 1981; 103: 2091
  • 29 Talma AG, Jouin P, De Vries JG, Troostwijk CB, Buning GH. W, Waninge JK, Visscher J, Kellogg RM. J. Am. Chem. Soc. 1985; 107: 3981
  • 30 Gran U, Wennerström O, Westman G. Tetrahedron 2001; 57: 8897
  • 31 Gran U. Tetrahedron 2003; 59: 4303
  • 32 Seki M, Baba N, Oda J, Inouye Y. J. Am. Chem. Soc. 1981; 103: 4613
  • 33 Hoshide F, Ohi S, Baba N, Oda JI, Inouye Y. Agric. Biol. Chem. 1982; 46: 2173
  • 34 Seki M, Baba N, Oda J, Inouye Y. J. Org. Chem. 1983; 48: 1370
  • 35 Skog K, Wennerström O. Tetrahedron Lett. 1992; 33: 1751
  • 36 Skog K, Wennerström O. Tetrahedron Lett. 1995; 36: 4629
  • 37 Bai CB, Wang NX, Wang YJ, Xing Y, Zhang W, Lan XW. Sci. Rep. 2015; 5: 17458
  • 38 Davies SG, Skerlj RT, Whittaker M. Tetrahedron Lett. 1990; 31: 3213
  • 39 Davies SG, Skerlj RT, Whittaker M. Tetrahedron: Asymmetry 1990; 1: 725
  • 40 Burgess VA, Davies SG, Skerlj RT. J. Chem. Soc., Chem. Commun. 1990; 24: 1759
  • 41 Imanishi T, Hamano Y, Yoshikawa H, Iwata C. J Chem. Soc., Chem. Commun. 1988; 7: 473
  • 42 Imanishi T, Obika S, Nishiyama T, Nishimoto M. Chem. Pharm. Bull. 1996; 44: 267
  • 43 Gaillard S, Papamicaël C, Marsais F, Dupas G, Levacher V. Synlett 2005; 441
  • 44 Vasse JL, Goumain S, Levacher V, Dupas G, Quéguiner G, Bourguignon J. Tetrahedron Lett. 2001; 42: 1871
  • 45 Leroy C, Levacher V, Dupas G, Quéguiner G, Bourguignon J. Tetrahedron: Asymmetry 1997; 8: 3309
  • 46 Ohno A, Ikeguchi M, Kimura T, Oka S. J. Chem. Soc., Chem. Commun. 1978; 328
  • 47 Ohno A, Ikeguchi M, Kimura T, Oka S. J. Am. Chem. Soc. 1979; 101: 7036
  • 48 Li X, Tanner DD. Tetrahedron Lett. 1996; 37: 3275
  • 49 Vasse JL, Dupas G, Duflos J, Quéguiner G, Bourguignon J, Levacher V. Tetrahedron Lett. 2001; 42: 3713-3716
  • 50 Mikata Y, Mizukami K, Hayashi K, Matsumoto S, Yano S, Yamazaki N, Ohno A. J. Org. Chem. 2001; 66: 1590
  • 51 Mikata Y, Hayashi K, Mizukami K, Matsumoto S, Yano S, Yamazaki N, Ohno A. Tetrahedron Lett. 2000; 41: 1035
  • 52 Bédat J, Levacher V, Dupas G, Quéguiner G, Bourguignon J. Chem. Lett. 1995; 327
  • 53 Bédat J, Levacher V, Dupas G, Quéguiner G, Bourguignon J. Chem. Lett. 1996; 359
  • 54 Combret Y, Duflos J, Dupas G, Bourguignon J, Quéguiner G. Tetrahedron: Asymmetry 1993; 4: 1635
  • 55 Combret Y, Torché JJ, Binay B, Dupas G. Bourguignon J., Quéguiner G. 1991; 125
  • 56 Combret Y, Duflos J, Dupas G, Bourguignon J, Quéguiner G. Tetrahedron 1993; 49: 5237
  • 57 Vasse JL, Dupas G, Duflos J, Quéguiner G, Bourguignon J, Levacher V. Tetrahedron Lett. 2001; 42: 3713
  • 58 Vitry C, Vasse J.-L, Dupas G, Levacher V, Quéguiner G, Bourguignon J. Tetrahedron 2001; 57: 3087
  • 59 Vasse JL, Dupas G, Duflos J, Quéguiner G, Bourguignon J, Levacher V. Tetrahedron Lett. 2001; 42: 4613
  • 60 Vasse JL, Levacher V, Bourguignon J, Dupas G. Tetrahedron 2003; 59: 4911
  • 61 Kanomata N, Nakata T. J. Am. Chem. Soc. 2000; 122: 4563
  • 62 Kanomata N, Nakata T. Angew. Chem. Int. Ed. 1997; 36: 1207
  • 63 Oikawa T, Kanomata N, Tada M. J. Org. Chem. 1993; 58: 2046
  • 64 Kanomata N, Ochiai Y. Tetrahedron Lett. 2001; 42: 1045
  • 65 Aizpurua JM, Palomo C, Fratila RM, Ferrón P, Benito A, Gómez-Bengoa E, Miranda JI, Santos JI. J. Org. Chem. 2009; 74: 6691
  • 66 Matsuda T, Yamagishi Y, Koguchi S, Iwai N, Kitazume T. Tetrahedron Lett. 2006; 47: 4619
  • 67 Zhu D, Yang Y, Hua L. J. Org. Chem. 2006; 71: 4202
  • 68 Mertens R, Greiner L, van den Ban EC, Haaker HB, Liese A. J. Mol. Catal. B: Enzym 2003; 24: 39
  • 69 Höllrigl V, Otto K, Schmid A. Adv. Synth. Catal. 2007; 349: 1337
  • 70 Nakamura K, Yamanaka R. Chem. Commun. 2002; 16: 1782
  • 71 Nakamura K, Yamanaka R. Tetrahedron: Asymmetry 2002; 13: 2529
  • 72 Inoue K, Makino Y, Itoh N. Tetrahedron: Asymmetry 2005; 16: 2539
  • 73 Inoue K, Makino Y, Itoh N. Appl. Environ. Microbiol. 2005; 71: 3633
  • 74 Musa MM, Ziegelmann-Fjeld KI, Vieille C, Zeikus JG, Phillips RS. J. Org. Chem. 2007; 72: 30
  • 75 Ziegelmann-Fjeld KI, Musa MM, Phillips RS, Zeikus JG, Vieille CA. Protein Eng. Des. Sel. 2007; 20: 47
  • 76 Tong X, El-Zahab B, Zhao X, Liu Y, Wang P. Biotechnol. Bioeng. 2011; 108: 465
  • 77 Mutti FG, Knaus T, Scrutton NS, Breuer M, Turner NJ. Science 2015; 349: 1525
  • 78 Ghssein G, Brutesco C, Ouerdane L, Fojcik C, Izaute A, Wang S, Hajjar C, Lobinski R, Lemaire D, Richaud P, Voulhoux R, Espaillat A, Cava F, Pignol D, Borezée-Durant E, Arnoux P. Science 2016; 352: 1105
  • 79 Nandakumar A, Perumal PT. Org. Lett. 2013; 15: 382
  • 80 Kaura M, Kumar P, Hrdlicka PJ. J. Org. Chem. 2014; 79: 6256
  • 81 Lambert C, Scherpf T, Ceymann H, Schmiedel A, Holzapfel M. J. Am. Chem. Soc. 2015; 137: 3547