Subscribe to RSS
DOI: 10.1055/s-0036-1588536
Recent Advances in Transition-Metal-Catalyzed, Directed Aryl C–H/N–H Cross-Coupling Reactions
Martyn C. Henry is supported by an EPSRC DTA studentship (EP/M508056/1).Publication History
Received: 06 July 2017
Accepted: 14 July 2017
Publication Date:
28 August 2017 (online)
Abstract
Amination and amidation of aryl compounds using a transition-metal-catalyzed cross-coupling reaction typically involves prefunctionalization or preoxidation of either partner. In recent years, a new class of transition-metal-catalyzed cross-dehydrogenative coupling reaction has been developed for the direct formation of aryl C–N bonds. This short review highlights the substantial progress made for ortho-C–N bond formation via transition-metal-catalyzed chelation-directed aryl C–H activation and gives an overview of the challenges that remain for directed meta- and para-selective reactions.
1 Introduction
2 Intramolecular C–N Cross-Dehydrogenative Coupling
2.1 Nitrogen Functionality as Both Coupling Partner and Directing Group
2.2 Chelating-Group-Directed Intramolecular C–N Bond Formation
3 Intermolecular C–N Cross-Dehydrogenative Coupling
3.1 ortho-C–N Bond Formation
3.1.1 Copper-Catalyzed Reactions
3.1.2 Other Transition-Metal-Catalyzed Reactions
3.2 meta- and para-C–N Bond Formation
4 C–N Cross-Dehydrogenative Coupling of Acidic C–H Bonds
5 Conclusions
-
References
- 1a Hili R. Yudin AK. Nat. Chem. Biol. 2006; 2: 284
- 1b Amino Group Chemistry: From Synthesis to the Life Sciences. Ricci A. Wiley-VCH; Weinheim: 2007
- 2a Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations. Wiley-VCH; New York: 1989
- 2b Smith MB. March J. March’s Advanced Organic Chemistry . 5th ed. Wiley-Interscience; New York: 2001
- 3a Kunz K. Scholz U. Ganzer D. Synlett 2003; 2428
- 3b Ley SV. Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
- 3c Sambiagio C. Marsden SP. Blacker AJ. McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
- 3d Okano K. Tokuyama H. Fukuyama T. Chem. Commun. 2014; 50: 13650
- 4a Carril M. SanMartin R. Domínguez E. Chem. Soc. Rev. 2008; 37: 639
- 4b Hartwig JF. Acc. Chem. Res. 2008; 41: 1534
- 4c Surry DS. Buchwald S. Angew. Chem. Int. Ed. 2008; 47: 6338
- 4d Fischer C. Koenig B. Belstein J. Org. Chem. 2011; 7: 59
- 5a Thirunavukkarasu VS. Kozhushkov SI. Ackerman L. Chem. Commun. 2014; 50: 29
- 5b Louillat M.-L. Patureau FW. Chem. Soc. Rev. 2014; 43: 901
- 5c Daugulis O. Roane J. Tran LD. Acc. Chem. Res. 2015; 48: 1053
- 5d Jiao J. Murakami K. Itami K. ACS Catal. 2016; 6: 610
- 5e Kim H. Chang S. ACS Catal. 2016; 6: 2341
- 5f Kim H. Chang S. Acc. Chem. Res. 2017; 50: 482
- 5g Park Y. Kim Y. Chang S. Chem. Rev. 2017; 117: 9247
- 6a Tsang WC. P. Zheng N. Buchwald SL. J. Am. Chem. Soc. 2005; 127: 14560
- 6b Tsang WC. P. Munday RH. Brasche G. Zheng N. Buchwald SL. J. Org. Chem. 2008; 73: 7603
- 7 Jordon-Hore JA. Johansson CC. C. Gulias M. Beck EM. Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 16184
- 8 Youn SW. Bihn JH. Kim BS. Org. Lett. 2011; 13: 3738
- 9 Suzuki C. Hirano K. Satoh T. Miura M. Org. Lett. 2015; 17: 1597
- 10 Brasche G. Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 1932
- 11 Wang H. Wang Y. Peng C. Zhang J. Zhu Q. J. Am. Chem. Soc. 2010; 132: 13217
- 12 Wasa M. Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 14058
- 13 Inamoto K. Saito T. Hiroya K. Doi T. J. Org. Chem. 2010; 75: 3900
- 14 Inamoto K. Saito T. Katsuno M. Sakamoto T. Hiroya K. Org. Lett. 2007; 9: 2931
- 15a Takamatsu K. Hirano K. Satoh T. Miura M. Org. Lett. 2014; 16: 2892
- 15b Takamatsu K. Hirano K. Satoh T. Miura M. J. Org. Chem. 2015; 80: 3242
- 16 Zhang T.-Y. Lin J.-B. Li Q.-Z. Kang J.-C. Pan J.-L. Hou S.-H. Chen C. Zhang S.-Y. Org. Lett. 2017; 19: 1764
- 17 He G. Zhao Y. Zhang S. Lu C. Chen G. J. Am. Chem. Soc. 2012; 134: 3
- 18 Nadres ET. Daugulis O. J. Am. Chem. Soc. 2012; 134: 7
- 19 He G. Lu C. Zhao Y. Nack WA. Chen G. Org. Lett. 2012; 14: 2944
- 20 He G. Lu G. Guo Z. Liu P. Chen G. Nat. Chem. 2016; 8: 1131
- 21 Mei T.-S. Leow D. Xiao H. Laforteza BN. Yu J.-Q. Org. Lett. 2013; 15: 3058
- 22 Ye X. He Z. Ahmed T. Weise K. Akhmedov NG. Peterson JL. Shi X. Chem. Sci. 2013; 4: 3712
- 23 He Y.-P. Zhang C. Fan M. Wu Z. Ma D. Org. Lett. 2015; 17: 496
- 24 Wang C. Chen C. Zhang J. Han J. Wang Q. Guo K. Liu P. Guan M. Yao Y. Zhao Y. Angew. Chem. Int. Ed. 2014; 53: 9884
- 25 Guan M. Pang Y. Zhang J. Zhao Y. Chem. Commun. 2016; 52: 7043
- 26 Chen X. Hao X.-S. Goodhue CE. Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
- 27 Uemura T. Imoto S. Chatani N. Chem. Lett. 2006; 35: 842
- 28 Shuai Q. Deng G. Chua Z. Bohle DS. Li C.-J. Adv. Synth. Catal. 2010; 352: 632
- 29 John A. Nicholas KM. J. Org. Chem. 2011; 76: 4158
- 30 Li G. Jia C. Chen Q. Sun K. Zhao F. Wu H. Wang Z. Lv Y. Chen X. Adv. Synth. Catal. 2015; 357: 1311
- 31 Xu H. Qiao X. Yang S. Shen Z. J. Org. Chem. 2014; 79: 4414
- 32a Tran LD. Roane J. Daugulis O. Angew. Chem. Int. Ed. 2013; 52: 6043
- 32b Roane J. Daugulis O. J. Am. Chem. Soc. 2016; 138: 4601
- 33 Tran NT. T. Tran QH. Truong T. J. Catal. 2014; 320: 9
- 34 Singh BK. Polley A. Jana R. J. Org. Chem. 2016; 81: 4295
- 35 Martínez ÁM. Rodríguez N. Arrayás RG. Carretero JC. Chem. Commun. 2014; 50: 2801
- 36 Li Q. Zhang S.-Y. He G. Ai Z. Nack WA. Chen G. Org. Lett. 2014; 16: 1764
- 37 Shang M. Sun S.-Z. Dai H.-X. Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 3354
- 38 Shang M. Shao Q. Sun S.-Z. Chen Y.-Q. Xu H. Dai H.-X. Yu J.-Q. Chem. Sci. 2017; 8: 1469
- 39 Thu H.-Y. Yu W.-Y. Che C.-M. J. Am. Chem. Soc. 2006; 128: 9048
- 40 Zhao H. Shang Y. Su W. Org. Lett. 2013; 15: 5106
- 41 Maiden TM. M. Swanson S. Procopiou PA. Harrity JP. A. Chem. Eur. J. 2015; 21: 14342
- 42 Maiden TM. M. Swanson S. Procopiou PA. Harrity JP. A. Org. Lett. 2016; 18: 3434
- 43 Louillat M.-L. Patureau FW. Org. Lett. 2013; 15: 164
- 44 Louillat M.-L. Biafora A. Legros F. Patureau FW. Angew. Chem. Int. Ed. 2014; 53: 3505
- 45 Seth K. Roy SR. Chakraborti AK. Chem. Commun. 2016; 52: 922
- 46 Xiao B. Gong T.-J. Xu J. Liu Z.-J. Liu L. J. Am. Chem. Soc. 2011; 133: 1466
- 47 Zhang L.-B. Zhang S.-K. Wei D. Zhu X. Hao X.-Q. Su J.-H. Niu J.-L. Song M.-P. Org. Lett. 2016; 18: 1318
- 48 Du C. Li P.-X. Zhu X. Han J.-N. Niu J.-L. Song M.-P. ACS Catal. 2017; 7: 2810
- 49 Yan Q. Chen Z. Yu W. Yin H. Liu Z. Zhang Y. Org. Lett. 2015; 17: 2482
- 50 Kim H. Shin K. Chang S. J. Am. Chem. Soc. 2014; 136: 5904
- 51 Kim H. Chang S. ACS Catal. 2015; 5: 6665
- 52 Wang H.-W. Lu Y. Zhang B. He J. Xu H.-J. Kang Y.-S. Sun W.-Y. Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 7449
- 53a Wang P. Li G.-C. Jain P. Farmer ME. He J. Shen P.-X. Yu J.-Q. J. Am. Chem. Soc. 2016; 138: 14092
- 53b Wang P. Farmer ME. Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 5125
- 54 Della Ca’ N. Fontana M. Motti E. Catellani M. Acc. Chem. Res. 2016; 49: 1389
- 55 Sun K. Li Y. Xiong T. Zhang J. Zhang Q. J. Am. Chem. Soc. 2011; 133: 1694
- 56 Shrestha R. Mukherjee P. Tan Y. Litman ZC. Hartwig JF. J. Am. Chem. Soc. 2013; 135: 8480
- 57 Marchetti L. Kantak A. Davis R. DeBoef B. Org. Lett. 2015; 17: 358
- 58 Mo F. Yan JM. Qiu D. Li F. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2010; 49: 2028
- 59a Sokolovs I. Lubriks D. Suna E. J. Am. Chem. Soc. 2014; 136: 6920
- 59b Berzina B. Sokolovs I. Suna E. ACS Catal. 2015; 5: 7008
- 60 Mostafa MA. B. Calder ED. D. Racys DT. Sutherland A. Chem. Eur. J. 2017; 23: 1044
- 61 Monaguchi D. Fujiwara T. Furukawa H. Mori A. Org. Lett. 2009; 11: 1607
- 62 Wang Q. Schreiber SL. Org. Lett. 2009; 11: 5178
- 63 Miyasaka M. Hirano K. Satoh T. Kowalczyk R. Bolm C. Miura M. Org. Lett. 2011; 13: 359
- 64 Wang X. Jin Y. Zhao Y. Zhu L. Fu H. Org. Lett. 2012; 14: 452
- 65 Oda Y. Hirano K. Satoh T. Miura M. Org. Lett. 2012; 14: 664
- 66 Xu J. Li J. Wei Z. Zhang Q. Shi D. RSC Adv. 2013; 3: 9622
- 67 Wang X. Sun K. Lv Y. Ma F. Li G. Li D. Zhu Z. Jiang Y. Zhao F. Chem. Asian J. 2014; 9: 3413
- 68 Kim JY. Cho SH. Joseph J. Chang S. Angew. Chem. Int. Ed. 2010; 49: 9899
- 69 Li Y. Liu J. Xie Y. Zhang R. Jin K. Wang X. Duan C. Org. Biomol. Chem. 2012; 10: 3175
- 70 Pal P. Giri AK. Singh H. Ghosh SC. Panda AB. Chem. Asian J. 2014; 9: 2392
- 71 Zhao H. Wang M. Su W. Hong M. Adv. Synth. Catal. 2010; 352: 1301
- 72 Li G. Jia C. Sun K. Org. Lett. 2013; 15: 5198
- 73 Zhu C. Yi M. Wei D. Chen X. Wu Y. Cui X. Org. Lett. 2014; 16: 1840
- 74 Yu H. Dannenberg CA. Li Z. Bolm C. Chem. Asian J. 2016; 11: 54
- 75 Sun K. Wang X. Liu L. Sun J. Liu X. Li Z. Zhang Z. Zhang G. ACS Catal. 2015; 5: 7194
For reviews of copper-catalyzed aryl amination, see:
For reviews of palladium-catalyzed aryl amination, see:
For recent reviews, see: