CC BY 4.0 · Synthesis 2017; 49(20): 4586-4598
DOI: 10.1055/s-0036-1588536
short review
Copyright with the author

Recent Advances in Transition-Metal-Catalyzed, Directed Aryl C–H/N–H Cross-Coupling Reactions

Martyn C. Henry
WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom   Email: Andrew.Sutherland@glasgow.ac.uk
,
Mohamed A. B. Mostafa
WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom   Email: Andrew.Sutherland@glasgow.ac.uk
,
WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom   Email: Andrew.Sutherland@glasgow.ac.uk
› Author Affiliations
Martyn C. Henry is supported by an EPSRC DTA studentship (EP/M508056/1).
Further Information

Publication History

Received: 06 July 2017

Accepted: 14 July 2017

Publication Date:
28 August 2017 (online)


Abstract

Amination and amidation of aryl compounds using a transition-metal-catalyzed cross-coupling reaction typically involves prefunctionalization or preoxidation of either partner. In recent years, a new class of transition-metal-catalyzed cross-dehydrogenative coupling reaction has been developed for the direct formation of aryl C–N bonds. This short review highlights the substantial progress made for ortho-C–N bond formation via transition-metal-catalyzed chelation-directed aryl C–H activation and gives an overview of the challenges that remain for directed meta- and para-selective reactions.

1 Introduction

2 Intramolecular C–N Cross-Dehydrogenative Coupling

2.1 Nitrogen Functionality as Both Coupling Partner and Directing Group

2.2 Chelating-Group-Directed Intramolecular C–N Bond Formation

3 Intermolecular C–N Cross-Dehydrogenative Coupling

3.1 ortho-C–N Bond Formation

3.1.1 Copper-Catalyzed Reactions

3.1.2 Other Transition-Metal-Catalyzed Reactions

3.2 meta- and para-C–N Bond Formation

4 C–N Cross-Dehydrogenative Coupling of Acidic C–H Bonds

5 Conclusions

 
  • References

    • 1a Hili R. Yudin AK. Nat. Chem. Biol. 2006; 2: 284
    • 1b Amino Group Chemistry: From Synthesis to the Life Sciences. Ricci A. Wiley-VCH; Weinheim: 2007
    • 2a Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations. Wiley-VCH; New York: 1989
    • 2b Smith MB. March J. March’s Advanced Organic Chemistry . 5th ed. Wiley-Interscience; New York: 2001

      For reviews of copper-catalyzed aryl amination, see:
    • 3a Kunz K. Scholz U. Ganzer D. Synlett 2003; 2428
    • 3b Ley SV. Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 3c Sambiagio C. Marsden SP. Blacker AJ. McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
    • 3d Okano K. Tokuyama H. Fukuyama T. Chem. Commun. 2014; 50: 13650

      For reviews of palladium-catalyzed aryl amination, see:
    • 4a Carril M. SanMartin R. Domínguez E. Chem. Soc. Rev. 2008; 37: 639
    • 4b Hartwig JF. Acc. Chem. Res. 2008; 41: 1534
    • 4c Surry DS. Buchwald S. Angew. Chem. Int. Ed. 2008; 47: 6338
    • 4d Fischer C. Koenig B. Belstein J. Org. Chem. 2011; 7: 59

      For recent reviews, see:
    • 5a Thirunavukkarasu VS. Kozhushkov SI. Ackerman L. Chem. Commun. 2014; 50: 29
    • 5b Louillat M.-L. Patureau FW. Chem. Soc. Rev. 2014; 43: 901
    • 5c Daugulis O. Roane J. Tran LD. Acc. Chem. Res. 2015; 48: 1053
    • 5d Jiao J. Murakami K. Itami K. ACS Catal. 2016; 6: 610
    • 5e Kim H. Chang S. ACS Catal. 2016; 6: 2341
    • 5f Kim H. Chang S. Acc. Chem. Res. 2017; 50: 482
    • 5g Park Y. Kim Y. Chang S. Chem. Rev. 2017; 117: 9247
    • 6a Tsang WC. P. Zheng N. Buchwald SL. J. Am. Chem. Soc. 2005; 127: 14560
    • 6b Tsang WC. P. Munday RH. Brasche G. Zheng N. Buchwald SL. J. Org. Chem. 2008; 73: 7603
  • 7 Jordon-Hore JA. Johansson CC. C. Gulias M. Beck EM. Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 16184
  • 8 Youn SW. Bihn JH. Kim BS. Org. Lett. 2011; 13: 3738
  • 9 Suzuki C. Hirano K. Satoh T. Miura M. Org. Lett. 2015; 17: 1597
  • 10 Brasche G. Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 1932
  • 11 Wang H. Wang Y. Peng C. Zhang J. Zhu Q. J. Am. Chem. Soc. 2010; 132: 13217
  • 12 Wasa M. Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 14058
  • 13 Inamoto K. Saito T. Hiroya K. Doi T. J. Org. Chem. 2010; 75: 3900
  • 14 Inamoto K. Saito T. Katsuno M. Sakamoto T. Hiroya K. Org. Lett. 2007; 9: 2931
    • 15a Takamatsu K. Hirano K. Satoh T. Miura M. Org. Lett. 2014; 16: 2892
    • 15b Takamatsu K. Hirano K. Satoh T. Miura M. J. Org. Chem. 2015; 80: 3242
  • 16 Zhang T.-Y. Lin J.-B. Li Q.-Z. Kang J.-C. Pan J.-L. Hou S.-H. Chen C. Zhang S.-Y. Org. Lett. 2017; 19: 1764
  • 17 He G. Zhao Y. Zhang S. Lu C. Chen G. J. Am. Chem. Soc. 2012; 134: 3
  • 18 Nadres ET. Daugulis O. J. Am. Chem. Soc. 2012; 134: 7
  • 19 He G. Lu C. Zhao Y. Nack WA. Chen G. Org. Lett. 2012; 14: 2944
  • 20 He G. Lu G. Guo Z. Liu P. Chen G. Nat. Chem. 2016; 8: 1131
  • 21 Mei T.-S. Leow D. Xiao H. Laforteza BN. Yu J.-Q. Org. Lett. 2013; 15: 3058
  • 22 Ye X. He Z. Ahmed T. Weise K. Akhmedov NG. Peterson JL. Shi X. Chem. Sci. 2013; 4: 3712
  • 23 He Y.-P. Zhang C. Fan M. Wu Z. Ma D. Org. Lett. 2015; 17: 496
  • 24 Wang C. Chen C. Zhang J. Han J. Wang Q. Guo K. Liu P. Guan M. Yao Y. Zhao Y. Angew. Chem. Int. Ed. 2014; 53: 9884
  • 25 Guan M. Pang Y. Zhang J. Zhao Y. Chem. Commun. 2016; 52: 7043
  • 26 Chen X. Hao X.-S. Goodhue CE. Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
  • 27 Uemura T. Imoto S. Chatani N. Chem. Lett. 2006; 35: 842
  • 28 Shuai Q. Deng G. Chua Z. Bohle DS. Li C.-J. Adv. Synth. Catal. 2010; 352: 632
  • 29 John A. Nicholas KM. J. Org. Chem. 2011; 76: 4158
  • 30 Li G. Jia C. Chen Q. Sun K. Zhao F. Wu H. Wang Z. Lv Y. Chen X. Adv. Synth. Catal. 2015; 357: 1311
  • 31 Xu H. Qiao X. Yang S. Shen Z. J. Org. Chem. 2014; 79: 4414
    • 32a Tran LD. Roane J. Daugulis O. Angew. Chem. Int. Ed. 2013; 52: 6043
    • 32b Roane J. Daugulis O. J. Am. Chem. Soc. 2016; 138: 4601
  • 33 Tran NT. T. Tran QH. Truong T. J. Catal. 2014; 320: 9
  • 34 Singh BK. Polley A. Jana R. J. Org. Chem. 2016; 81: 4295
  • 35 Martínez ÁM. Rodríguez N. Arrayás RG. Carretero JC. Chem. Commun. 2014; 50: 2801
  • 36 Li Q. Zhang S.-Y. He G. Ai Z. Nack WA. Chen G. Org. Lett. 2014; 16: 1764
  • 37 Shang M. Sun S.-Z. Dai H.-X. Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 3354
  • 38 Shang M. Shao Q. Sun S.-Z. Chen Y.-Q. Xu H. Dai H.-X. Yu J.-Q. Chem. Sci. 2017; 8: 1469
  • 39 Thu H.-Y. Yu W.-Y. Che C.-M. J. Am. Chem. Soc. 2006; 128: 9048
  • 40 Zhao H. Shang Y. Su W. Org. Lett. 2013; 15: 5106
  • 41 Maiden TM. M. Swanson S. Procopiou PA. Harrity JP. A. Chem. Eur. J. 2015; 21: 14342
  • 42 Maiden TM. M. Swanson S. Procopiou PA. Harrity JP. A. Org. Lett. 2016; 18: 3434
  • 43 Louillat M.-L. Patureau FW. Org. Lett. 2013; 15: 164
  • 44 Louillat M.-L. Biafora A. Legros F. Patureau FW. Angew. Chem. Int. Ed. 2014; 53: 3505
  • 45 Seth K. Roy SR. Chakraborti AK. Chem. Commun. 2016; 52: 922
  • 46 Xiao B. Gong T.-J. Xu J. Liu Z.-J. Liu L. J. Am. Chem. Soc. 2011; 133: 1466
  • 47 Zhang L.-B. Zhang S.-K. Wei D. Zhu X. Hao X.-Q. Su J.-H. Niu J.-L. Song M.-P. Org. Lett. 2016; 18: 1318
  • 48 Du C. Li P.-X. Zhu X. Han J.-N. Niu J.-L. Song M.-P. ACS Catal. 2017; 7: 2810
  • 49 Yan Q. Chen Z. Yu W. Yin H. Liu Z. Zhang Y. Org. Lett. 2015; 17: 2482
  • 50 Kim H. Shin K. Chang S. J. Am. Chem. Soc. 2014; 136: 5904
  • 51 Kim H. Chang S. ACS Catal. 2015; 5: 6665
  • 52 Wang H.-W. Lu Y. Zhang B. He J. Xu H.-J. Kang Y.-S. Sun W.-Y. Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 7449
    • 53a Wang P. Li G.-C. Jain P. Farmer ME. He J. Shen P.-X. Yu J.-Q. J. Am. Chem. Soc. 2016; 138: 14092
    • 53b Wang P. Farmer ME. Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 5125
  • 54 Della Ca’ N. Fontana M. Motti E. Catellani M. Acc. Chem. Res. 2016; 49: 1389
  • 55 Sun K. Li Y. Xiong T. Zhang J. Zhang Q. J. Am. Chem. Soc. 2011; 133: 1694
  • 56 Shrestha R. Mukherjee P. Tan Y. Litman ZC. Hartwig JF. J. Am. Chem. Soc. 2013; 135: 8480
  • 57 Marchetti L. Kantak A. Davis R. DeBoef B. Org. Lett. 2015; 17: 358
  • 58 Mo F. Yan JM. Qiu D. Li F. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2010; 49: 2028
    • 59a Sokolovs I. Lubriks D. Suna E. J. Am. Chem. Soc. 2014; 136: 6920
    • 59b Berzina B. Sokolovs I. Suna E. ACS Catal. 2015; 5: 7008
  • 60 Mostafa MA. B. Calder ED. D. Racys DT. Sutherland A. Chem. Eur. J. 2017; 23: 1044
  • 61 Monaguchi D. Fujiwara T. Furukawa H. Mori A. Org. Lett. 2009; 11: 1607
  • 62 Wang Q. Schreiber SL. Org. Lett. 2009; 11: 5178
  • 63 Miyasaka M. Hirano K. Satoh T. Kowalczyk R. Bolm C. Miura M. Org. Lett. 2011; 13: 359
  • 64 Wang X. Jin Y. Zhao Y. Zhu L. Fu H. Org. Lett. 2012; 14: 452
  • 65 Oda Y. Hirano K. Satoh T. Miura M. Org. Lett. 2012; 14: 664
  • 66 Xu J. Li J. Wei Z. Zhang Q. Shi D. RSC Adv. 2013; 3: 9622
  • 67 Wang X. Sun K. Lv Y. Ma F. Li G. Li D. Zhu Z. Jiang Y. Zhao F. Chem. Asian J. 2014; 9: 3413
  • 68 Kim JY. Cho SH. Joseph J. Chang S. Angew. Chem. Int. Ed. 2010; 49: 9899
  • 69 Li Y. Liu J. Xie Y. Zhang R. Jin K. Wang X. Duan C. Org. Biomol. Chem. 2012; 10: 3175
  • 70 Pal P. Giri AK. Singh H. Ghosh SC. Panda AB. Chem. Asian J. 2014; 9: 2392
  • 71 Zhao H. Wang M. Su W. Hong M. Adv. Synth. Catal. 2010; 352: 1301
  • 72 Li G. Jia C. Sun K. Org. Lett. 2013; 15: 5198
  • 73 Zhu C. Yi M. Wei D. Chen X. Wu Y. Cui X. Org. Lett. 2014; 16: 1840
  • 74 Yu H. Dannenberg CA. Li Z. Bolm C. Chem. Asian J. 2016; 11: 54
  • 75 Sun K. Wang X. Liu L. Sun J. Liu X. Li Z. Zhang Z. Zhang G. ACS Catal. 2015; 5: 7194