Synlett 2017; 28(14): 1695-1706
DOI: 10.1055/s-0036-1588453
account
© Georg Thieme Verlag Stuttgart · New York

Asymmetric [3+3] Cycloaddition for Heterocycle Synthesis

Yongming Deng
Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, USA   Email: michael.doyle@utsa.edu
,
Qing-Qing Cheng
Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, USA   Email: michael.doyle@utsa.edu
,
Michael P. Doyle*
Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, USA   Email: michael.doyle@utsa.edu
› Author Affiliations
Financial support for this research was provided by the National Institutes of Health (GM 46503) and the National Science Foundation (CHE-1212446 and CHE-1464690)
Further Information

Publication History

Received: 03 April 2017

Accepted after revision: 15 May 2017

Publication Date:
05 July 2017 (online)


Published as part of the ISHC Conference Special Section

Abstract

Asymmetric syntheses of six-membered ring heterocycles are important research targets not only in synthetic organic chemistry but also in pharmaceuticals. The [3+3]-cycloaddition methodology is a complementary strategy to [4+2] cycloaddition for the synthesis of heterocyclic compounds. Recent progress in [3+3]-cycloaddition processes provide powerful asymmetric methodologies for the construction of six-membered ring heterocycles with one to three heteroatoms in the ring. In this account, synthetic efforts during the past five years toward the synthesis of enantioenriched six-membered ring heterocycles through asymmetric [3+3] cycloaddition are reported. Asymmetric organocatalysis uses chiral amines, thioureas, phosphoric acids, or NHC catalysis to achieve high enantiocontrol. Transition-metal catalysts used as chiral Lewis acids to activate a dipolar species is an alternative approach. The most recent advance, chiral transition-metal-catalyzed reactions of enoldiazo compounds, has contributed toward the versatile and highly selective synthesis of six-membered heterocyclic compounds.

1 Introduction

2 Asymmetric Formal [3+3]-Cycloaddition Reactions by Organo­catalysis

2.1 By Amino-Catalysis

2.2 By N-Heterocyclic Carbenes

2.3 By Bifunctional Tertiary Amine-thioureas

2.4 By Chiral Phosphoric Acids

3 Asymmetric Formal [3+3]-Cycloaddition Reactions by Transition-Metal Catalysis

3.1 Copper Catalysis

3.2 Other Transition-Metal Catalysis

4 Asymmetric [3+3]-Cycloaddition Reactions of Enoldiazo Compounds

4.1 Asymmetric [3+3]-Cycloaddition Reactions of Nitrones with Electrophilic Metallo-enolcarbene Intermediates

4.2 Dearomatization in Asymmetric [3+3]-Cycloaddition Reactions of Enoldiazoacetates

4.3 Asymmetric Stepwise [3+3]-Cycloaddition Reaction of Enoldiazoacetates with Hydrazones

5 Summary and Outlook

 
  • References

    • 1a Joule JA. Mills K. Heterocyclic Chemistry . Wiley; Oxford: 2010. 5th ed. xxviii-689
    • 1b Li JJ. Heterocyclic Chemistry in Drug Discovery . John Wiley & Sons; Hoboken: 2013: xxi-697
    • 1c Baumann M. Baxendale IR. Beilstein J. Org. Chem. 2013; 9: 2265
    • 1d Lednicer D. Six-Membered Heterocycles. In The Organic Chemistry of Drug Synthesis. John Wiley & Sons; Hoboken: 2007: 115
    • 1e Nebe MM. Opatz T. Synthesis of Piperidines and Dehydropiperidines: Construction of the Six-Membered Ring. In Advances in Heterocyclic Chemistry. Vol. 122. Scriven EF. V. Ramsden CA. Chap. 5 Academic Press; Cambridge: 2017: 191
    • 1f Heravi MM. Talaei B. Ketenes as Privileged Synthons in the Synthesis of Heterocyclic Compounds: Six-Membered Heterocycles. In Advances in Heterocyclic Chemistry. Scriven EF. V. Ramsden CA. Academic Press; Cambridge: 2016. Part 3, Vol. 118: Chap. 5, 195
    • 2a Toyooka N. Asymmetric Synthesis of Six-Membered Ring Heterocycles. In Asymmetric Synthesis of Nitrogen Heterocycles. Royer J. Wiley-VCH; Weinheim: 2009: 95
    • 2b Tenti G. Ramos MT. Menéndez JC. Rodriguez J. Bonne D. Six-Membered Heterocycles. In Stereoselective Multiple Bond-Forming Transformations in Organic Synthesis. John Wiley & Sons; Hoboken: 2015: 45
    • 2c Núñez MG. García P. Moro RF. Díez D. Tetrahedron 2010; 66: 2089
    • 3a Eschenbrenner-Lux V. Kumar K. Waldmann H. Angew. Chem. Int. Ed. 2014; 53: 11146
    • 3b Jiang X. Wang R. Chem. Rev. 2013; 113: 5515
    • 4a Xu X. Doyle MP. Acc. Chem. Res. 2014; 47: 1396
    • 4b Hsung RP. Kurdyumov AV. Sydorenko N. Eur. J. Org. Chem. 2005; 23
    • 4c Buchanan GS. Feltenberger JB. Hsung RP. Curr. Org. Synth. 2010; 7: 363
    • 4d Deng J. Wang X.-N. Hsung RP. A Formal [3+3] Cycloaddition Approach to Natural Product Synthesis. In Methods and Applications of Cycloaddition Reactions in Organic Syntheses. John Wiley & Sons; Hoboken: Nishiwaki N. 2014: 283
    • 5a Huang Y. Lu X. Tetrahedron Lett. 1987; 28: 6219
    • 5b Huang Y. Lu X. Tetrahedron Lett. 1988; 29: 5663
    • 5c Bambal RB. Kemmitt RD. W. J. Organomet. Chem. 1989; 362: C18
    • 6a Sanchez Duque M. dM. Baslé O. Isambert N. Gaudel-Siri A. Génisson Y. Plaquevent J.-C. Rodriguez J. Constantieux T. Org. Lett. 2011; 13: 3296
    • 6b Na R. Jing C. Xu Q. Jiang H. Wu X. Shi J. Zhong J. Wang M. Benitez D. Tkatchouk E. Goddard WA. Guo H. Kwon O. J. Am. Chem. Soc. 2011; 133: 1333
    • 6c Chan A. Scheidt KA. J. Am. Chem. Soc. 2007; 129: 5334
    • 7a Shintani R. Hayashi T. J. Am. Chem. Soc. 2006; 128: 6330
    • 7b Shapiro ND. Shi Y. Toste FD. J. Am. Chem. Soc. 2009; 131: 11654
    • 7c Kanao K. Miyake Y. Nishibayashi Y. Organometalllics 2010; 29: 2126
    • 7d Grover HK. Lebold TP. Kerr MA. Org. Lett. 2011; 13: 220
    • 7e Zhang C. Hu X.-H. Wang Y.-H. Zheng Z. Xu J. Hu X.-P. J. Am. Chem. Soc. 2012; 134: 9585
  • 8 Huang J. Zhao L. Liu Y. Cao W. Wu X. Org. Lett. 2013; 15: 4338
  • 9 Wang S. Zhang Y. Dong G. Wu S. Zhu S. Miao Z. Yao J. Li H. Li J. Zhang W. Sheng C. Wang W. Org. Lett. 2013; 15: 5570
    • 10a Harrity JP. A. Provoost O. Org. Biomol. Chem. 2005; 3: 1349
    • 10b Tang Y. Oppenheimer J. Song Z. You L. Zhang X. Hsung RP. Tetrahedron 2006; 62: 10785
    • 10c Lawrence AK. Gademann K. Synthesis 2008; 331
  • 11 He X.-L. Xiao Y.-C. Du W. Chen Y.-C. Chem. Eur. J. 2015; 21: 3443
  • 12 Mao J.-H. Wang Z.-T. Wang Z.-Y. Cheng Y. J. Org. Chem. 2015; 80: 6350
  • 13 Zhang C.-L. Wang D.-L. Chen K.-Q. Ye S. Org. Biomol. Chem. 2015; 13: 11255
  • 14 Xie D. Yang L. Lin Y. Zhang Z. Chen D. Zeng X. Zhong G. Org. Lett. 2015; 17: 2318
    • 15a Doyle AG. Jacobsen EN. Chem. Rev. 2007; 107: 5713
    • 15b Pihko PM. Angew. Chem. Int. Ed. 2004; 43: 2062
    • 15c Serdyuk OV. Heckel CM. Tsogoeva SB. Org. Biomol. Chem. 2013; 11: 7051
    • 15d Otocka S. Kwiatkowska M. Madalińska L. Kiełbasiński P. Chem. Rev. 2017; 117: 4147
  • 16 Yue Z. Li W. Liu L. Wang C. Zhang J. Adv. Synth. Catal. 2016; 358: 3015
  • 17 Goudedranche S. Bugaut X. Constantieux T. Bonne D. Rodriguez J. Chem. Eur. J. 2014; 20: 410
  • 18 Chen X. Qi Z.-H. Zhang S.-Y. Kong L.-P. Wang Y. Wang X.-W. Org. Lett. 2015; 17: 42
  • 19 Chen X. Zhang J.-Q.. Yin S.-J.. Li H.-Y.. Zhou W.-Q.. Wang X.-W. Org. Lett. 2015; 17: 4188
  • 20 Shi F. Zhu R.-Y. Dai W. Wang C.-S. Tu S.-J. Chem. Eur. J. 2014; 20: 2597
  • 21 Sun X.-X. Zhang H.-H. Li G.-H. He Y.-Y. Shi F. Chem. Eur. J. 2016; 22: 17526
    • 22a Xu XF. Doyle MP. Aust. J. Chem. 2014; 67: 365
    • 22b Deng Y. Qiu H. Srinivas HD. Doyle MP. Curr. Org. Chem. 2016; 20: 61
    • 22c Deng Y. Doyle MP. Isr. J. Chem. 2016; 56: 399
    • 22d Cheng Q.-Q. Doyle MP. Adv. Organomet. Chem. 2016; 66: 1
    • 23a Narayan R. Potowski M. Jia Z.-J. Antonchick AP. Waldmann H. Acc. Chem. Res. 2014; 47: 1296
    • 23b Coldham I. Hufton R. Chem. Rev. 2005; 105: 2765
    • 23c Stanley LM. Sibi MP. Chem. Rev. 2008; 108: 2887
    • 23d Hashimoto T. Maruoka K. Chem. Rev. 2015; 115: 5366
    • 24a Tong M.-C. Chen X. Tao H.-Y. Wang C.-J. Angew. Chem. Int. Ed. 2013; 52: 12377
    • 24b Guo H. Liu H. Zhu F.-L. Na R. Jiang H. Wu Y. Zhang L. Li Z. Yu H. Wang B. Xiao Y. Hu X.-P. Wang M. Angew. Chem. Int. Ed. 2013; 52: 12641
  • 25 Yuan C. Liu H. Gao Z. Zhou L. Feng Y. Xiao Y. Guo H. Org. Lett. 2015; 17: 26
  • 26 Yang W.-L. Li C.-Y. Qin W.-J. Tang F.-F. Yu X. Deng W.-P. ACS Catal. 2016; 6: 5685
  • 27 Zhou Y.-Y. Li J. Ling L. Liao S.-H. Sun X.-L. Li Y.-X. Wang L.-J. Tang Y. Angew. Chem. Int. Ed. 2013; 52: 1452
  • 28 Navarro C. Shapiro ND. Bernasconi M. Horibe T. Toste FD. Tetrahedron 2015; 71: 5800
    • 29a Xu X. Deng Y. Yim DN. Zavalij PY. Doyle MP. Chem. Sci. 2015; 6: 2196
    • 29b Deng Y. Jing C. Doyle MP. Chem. Commun. 2015; 51: 12924
    • 29c Deng Y. Jing C. Arman H. Doyle MP. Organometallics 2016; 35: 3413
  • 30 Wang X. Xu X. Doyle MP. J. Am. Chem. Soc. 2011; 133: 16402
    • 31a Qian Y. Xu X. Wang X. Zavalij PY. Hu W. Doyle MP. Angew. Chem. Int. Ed. 2012; 51: 5900
    • 31b Qian Y. Zavalij PJ. Hu W. Doyle MP. Org. Lett. 2013; 15: 1564
    • 31c Shved AS. Tabolin AA. Novikov RA. Nelyubina YV. Timofeev VP. Ioffe SL. Eur. J. Org. Chem. 2016; 5569
  • 32 Cheng Q.-Q. Yedoyan J. Arman H. Doyle MP. J. Am. Chem. Soc. 2016; 138: 44
  • 33 Xu X. Zavalij PJ. Doyle MP. Chem. Commun. 2013; 49: 10287
  • 34 Xu X. Zavalij PY. Doyle MP. Angew. Chem. Int. Ed. 2013; 52: 12664
  • 35 Xu X. Zavalij PY. Doyle MP. J. Am. Chem. Soc. 2013; 135: 12439
  • 36 Xu X. Zavalij PY. Doyle MP. Angew. Chem. Int. Ed. 2012; 51: 9829
    • 37a Qin C. Davies HM. L. J. Am. Chem. Soc. 2013; 135: 14516
    • 37b Wang X. Abrahams QM. Zavalij PY. Doyle MP. Angew. Chem. Int. Ed. 2012; 51: 5907
    • 37c Pagar VV. Liu R.-S. Angew. Chem. Int. Ed. 2015; 54: 4923
    • 38a Cheng Q.-Q. Yedoyan J. Arman H. Doyle MP. Angew. Chem. Int. Ed. 2016; 55: 5573
    • 38b Jing C. Cheng Q.-Q. Deng Y. Arman H. Doyle MP. Org. Lett. 2016; 18: 4550