Synlett 2017; 28(09): 1101-1105
DOI: 10.1055/s-0036-1588413
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of the C1–C23 Fragment of the Archazolids and Evidence for V-ATPase but not COX Inhibitory Activity

Gregory W. O’Neil*
a   Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA   Email: oneilg@wwu.edu
,
Alexander M. Craig
a   Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA   Email: oneilg@wwu.edu
,
John R. Williams
a   Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA   Email: oneilg@wwu.edu
,
Jeffrey C. Young
b   Department of Biology, Western Washington University, Bellingham, WA 98225, USA
,
P. Clint Spiegel
a   Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA   Email: oneilg@wwu.edu
› Author Affiliations
Further Information

Publication History

Received: 23 December 2016

Accepted after revision: 17 January 2017

Publication Date:
08 February 2017 (online)


Abstract

A convergent synthesis of a C1–C23 fragment of the archa­zolids has been completed based on a high-yielding Stille coupling to construct the substituted Z,Z,E-conjugated triene. After removal of the protecting groups, the resulting tetrol exhibited evidence for inhibition of the vacuolar-type ATPase (V-ATPase) but not cyclooxygenase (COX) inhibitory activity.

Supporting Information

 
  • References and Notes

    • 1a Sasse F, Steinmetz H, Höfle G, Reichenbach H. J. Antibiot. 2003; 56: 520-520
    • 1b Menche D, Hassfeld J, Steinmetz H, Huss M, Wieczorek H, Sasse F. Eur. J. Org. Chem. 2007; 1196-1196
    • 1c Menche D, Hassfeld J, Steinmetz H, Huss M, Wieczorek H, Sasse F. J. Antibiot. 2007; 60: 328-328
    • 1d Horstmann N, Essig S, Bockelmann S, Wieczorek H, Huss M, Sasse F, Menche D. J. Nat. Prod. 2011; 74: 1100-1100
  • 2 von Schwarzenberg K, Lajtos T, Simon L, Mueller R, Vereb G, Vollmar AM. Mol. Oncol. 2014; 8: 9-9
  • 3 Hamm R, Zeino M, Frewert S, Efferth T. Toxicol. Appl. Pharm. 2014; 281: 78-78
  • 4 Zhang S, Schneider LS, Vick B, Grunert M, Jeremias I, Menche D, Müller R, Vollmar AM, Liebl J. Oncotarget 2015; 6: 43508-43508
  • 5 Schneider LS, von Schwarzenberg K, Lehr T, Ulrich M, Kubisch-Dohmen R, Liebl J, Trauner D, Menche D, Vollmar AM. Cancer Res. 2015; 75: 2863-2863
  • 6 Scherer O, Steinmetz H, Kaether C, Weinigel C, Barz D, Kleinert H, Menche D, Müller R, Pergola C, Werz O. Biochem. Pharmacol. 2014; 91: 490-490
  • 7 Schneider LS, Ulrich M, Lehr T, Menche D, Müller R, von Schwarzenberg K. Mol. Oncol. 2016; 10: 1054-1054
    • 8a Menche D, Hassfeld J, Li J, Rudolph S. J. Am. Chem. Soc. 2007; 129: 6100-6100
    • 8b Menche D, Hassfeld J, Li J, Mayer K, Rudolph S. J. Org. Chem. 2009; 74: 7220-7220
  • 9 Roethle PA, Ingrid TC, Trauner D. J. Am. Chem. Soc. 2007; 129: 8960-8960
  • 10 Huang Z, Negishi E.-I. J. Am. Chem. Soc. 2007; 129: 14788-14788
  • 11 Swick SM, Schaefer SL, O’Neil GW. Tetrahedron Lett. 2015; 56: 4039-4039
    • 12a O’Neil GW, Black MJ. Synlett 2010; 107-107
    • 12b Tran AB, Melly G, Doucette R, Ashcraft B, Sebren L, Young J, O’Neil GW. Org. Biomol. Chem. 2011; 9: 7671-7671
    • 12c King BR, Swick SM, Schaefer SL, Welch JR, Hunter EF, O’Neil GW. Synthesis 2014; 46: 2927-2927
  • 13 Loiseleur O, Koch G, Cercus J, Schürch F. Org. Process Res. Dev. 2005; 9: 259-259
  • 14 Drouet KE, Theodorakis EA. J. Am. Chem. Soc. 1999; 121: 456-456
  • 16 Mandal AK, Schneekloth JS, Kuramochi K, Crews CM. Org. Lett. 2006; 8: 427-427
  • 17 Boerding S, Bach T. Chem. Commun. 2014; 50: 4901-4901
    • 18a Dineen TA, Roush WR. Org. Lett. 2004; 6: 1523-1523
    • 18b The Z,Z-stereochemistry of the resulting stannane was confirmed by detailed NMR analysis. See Supporting Information.
  • 19 Fürstner A, Funel J.-A, Tremblay M, Bouchez LC, Nevado C, Waser M, Ackerstaff J, Stimson C. Chem. Commun. 2008; 2873-2873
  • 20 Crane EA, Gademann K. Angew. Chem. Int. Ed. 2016; 55: 2-2
  • 21 Compound 11 To a solution of 9 (36 mg, 0.058 mmol, 1.0 equiv) and 10 (45 mg, 0.058 mmol, 1.0 equiv) in degassed THF (1.2 mL) was added [Ph2PO2][NBu4] (75 mg, 0.17 mmol, 3.0 equiv), CuTC (28 mg, 0.07 mmol, 2.5 equiv), and Pd(PPh3)4 (7 mg, 0.006 mmol, 0.1 equiv), and the mixture was stirred for 15 h. The reaction was quenched with aq NaHCO3 (15 mL) and extracted with MTBE (2 × 15 mL). The combined organic extracts were dried over MgSO4, filtered, and concentrated in vacuo. Purification by flash chromatography on silica (20:1 to 10:1 hexanes–EtOAc) gave 11 (46 mg, 82%) as an oil. [α]D 20 –5.2 (c 0.5, CH2Cl2). IR (ATR): 3062, 2983, 1736, 1614, 1415, 1274, 1267, 1129, 1078, 930 cm–1. 1H NMR (500 MHz, C6D6): δ = 6.80 (d, J = 16.0 Hz, 1 H), 6.44 (ddd, J = 15.3, 10.7, 0.9 Hz, 1 H), 6.17 (d, J = 10.4 Hz, 1 H), 6.02 (s, 1 H), 5.90 (dd, J = 16.0, 7.2 Hz, 1 H), 5.58 (dd, J = 15.4, 8.0 Hz, 1 H), 5.34 (dd, J = 8.4, 0.8 Hz, 1 H), 5.29 (ddd, J = 9.8, 2.0, 1.0 Hz, 1 H), 5.07 (d, J = 7.4 Hz, 1 H), 4.29 (dd, J = 9.0, 6.0 Hz, 1 H), 3.63 (d, J = 10.0 Hz, 1 H), 3.58–3.53 (m, 2 H), 3.47 (dd, J = 9.7, 6.2 Hz, 1 H), 3.38 (dd, J = 9.7, 6.8 Hz, 1 H), 3.18 (s, 3 H), 2.71 (m, 1 H), 2.42 (m, 1 H), 1.96 (m, 2 H), 1.91 (s, 3 H), 1.86 (m, 1 H), 1.89 (d, J = 1.0 Hz, 3 H), 1.71 (d, J = 1.0 Hz, 3 H), 1.59 (s, 3 H), 1.50 (m, 2 H), 1.39 (m, 2 H), 1.08 (s, 6 H), 1.03 (s, 6 H), 1.02 (s, 3 H), 1.01 (s, 6 H), 1.00 (s, 3 H), 0.99 (d, J = 7.0 Hz, 3 H), 0.98 (s, 3 H), 0.96 (d, J = 7.0 Hz, 3 H), 0.95 (s, 6 H), 0.94 (d, J = 7.0 Hz, 3 H), 0.93 (s, 3 H), 0.19 (s, 3 H), 0.17 (s, 3 H), 0.13 (s, 6 H), 0.08 (s, 6 H), 0.05 (s, 6 H). 13C NMR (125 MHz, C6D6): δ = 137.8, 136.0, 134.9, 134.7, 133.4, 133.3, 133.0, 132.5, 130.9, 130.3, 126.3, 125.4, 73.8, 72.9, 68.5, 63.4, 63.4, 56.0, 43.7, 41.5, 40.6, 40.1, 33.1, 31.4, 30.3, 28.5, 26.7, 26.6, 26.5 25.4, 24.8, 24.8, 24.0, 21.0, 19.1, 18.9, 18.8, 17.4, 17.2, 17.1, 16.2, 14.3, 11.2, 9.8, 8.7, –3.0, –3.6, –4.2, –4.3, –4.4, –4.7, –4.8, –4.9. HRMS (ESI+): m/z calcd for C55H108O5Si4Na+ [M + Na]+: 983.7172; found 983.7179. Compound 1 To a solution of 11 (25 mg, 0.026 mmol) in THF (1.2 mL) at 0 °C was added pyridine (0.3 mL) and HF·py (60% HF, 0.2 mL), and the mixture was allowed to slowly warm to r.t. for 42 h. The reaction was cooled to 0 °C, diluted with EtOAc (15 mL), and quenched with aq NaHCO3 (15 mL). The layers were separated, and the aqueous phase was re-extracted with EtOAc (2 × 15 mL). The combined organic extracts were dried over MgSO4, filtered, and concentrated in vacuo. Purification by flash chromatography on silica (1:1 to 1:2 to 0:1 hexanes– EtOAc) gave 1 (7 mg, 58%) as an oil. [α] D 20 –6.0 (c 0.5, CH2Cl2). IR (ATR): 3350, 3955, 2929, 2872, 1716, 1688, 1525, 1471, 1418, 1369, 1244, 1126, 1084, 1008, 963, 919, 828, 730 cm–1. 1H NMR (500 MHz, CD3OD): δ = 6.52 (dd, J = 16.0, 0.7 Hz, 1 H, H13), 6.29 (ddd, J = 15.0, 10.8, 0.7 Hz, 1 H, H20), 5.90 (d, J = 11.0 Hz, 1 H, H19), 5.74 (s, 1 H, H11), 5.70 (dd, J = 15.8, 5.9 Hz, 1 H, H14), 5.57 (dd, J = 15.2, 7.6 Hz, 1 H, H21), 5.09 (d, J = 9.0 Hz, 1 H, H9), 5.07 (d, J = 8.0, 1.0 Hz, 1 H, H6), 4.46 (dd, J = 6.0, 3.5 Hz, 1 H, H15), 4.05 (dd, J = 9.0, 6.1 Hz, 1 H, H7), 3.48 (t, J = 6.0 Hz, 2 H, H1a/b), 3.38 (d, J = 8.4 Hz, 1 H, H17), 3.37 (dd, J = 10.6, 5.5 Hz, 1 H, H23a), 3.33 (dd, J = 10.6, 6.5 Hz, 1 H, H23b), 3.09 (s, 3 H, OMe), 2.36–2.28 (m, 2 H, H8/22), 1.97 (t, J = 7.3 Hz, 2 H, H4a/b), 1.81 (d, J = 1.2 Hz, 3 H, Me10), 1.70 (s, 3 H, Me12), 1.64 (m, 1 H, H16) 1.58 (d, J = 1.0 Hz, 3 H, Me5), 1.56 (d, J = 1.0 Hz, 3 H, Me18), 1.48–1.40 (m, 4 H, H2/3), 0.96 (d, J = 7.0 Hz, 3 H, Me22), 0.81 (d, J = 7.0 Hz, 3 H, Me8), 0.59 (d, J = 7.0 Hz, 3 H, Me16). 13C NMR (125 MHz, CD3OD): δ = 139.3, 138.7, 134.7, 134.4, 133.6, 132.7, 131.5, 130.5, 129.9, 127.3, 126.9, 90.4, 73.1, 73.0, 71.7, 68.2, 63.0, 56.3, 42.8, 41.3, 41.2, 40.7, 33.3, 25.3, 25.0, 20.5, 17.2, 17.0, 16.3, 11.1, 10.7. HRMS (ESI+): m/z calcd for C31H52O5Na+ [M + Na]+: 527.3712; found 527.3729.
  • 22 Assays were conducted side-by-side for compound 1 and concanamycin at concentrations of 0.125, 0.25, 0.5, 1.0, 2.0, 10.0, and 20.0 μM. See Supporting Information for details.
  • 23 Smart LB, Vojdani F, Maeshima M, Wilkins TA. Plant Physiol. 1998; 116: 1539-1539
  • 24 Von der Fecht-Bartenbach J, Bogner M, Krebs M, Stierhof Y.-D, Schumacher K, Ludwig U. Plant J. 2007; 50: 466-466

    • Due to short supply, archazolids themselves were not assayed. However, reported V-ATPase inhibitory activity of concanamycin A and archazolid A are similar. The IC50 values for concanamycin A and archazolid A of purified M. sexta holoenzyme were reported as 0.8 nmol/mg V-ATPase and 0.5 nmol/mg V-ATPase, respectively. Archazolid:
    • 25a Huss M, Sasse F, Kunze B, Jansen R, Steinmetz H, Ingenhorst G, Zeeck A, Wieczorek H. BMC Biochem. 2005; 6: 13-13

    • Concanamycin:
    • 25b Huss M, Ingenhorst G, König S, Gaβel M, Dröse S, Zeeck A, Altendorf K, Wieczorek H. J. Biol. Chem. 2002; 277: 40544-40544
  • 26 Reker D, Perna AM, Rodrigues T, Schneider P, Reutlinger M, Mönch B, Koeberle A, Lamers C, Gabler M, Steinmetz H, Müller R, Schubert-Zsilavecz M, Werz O, Schneider G. Nat. Chem. 2014; 6: 1072-1072
  • 27 A COX activity assay kit was purchased from Cayman Chemical (https://www.caymanchem.com/product/760151, accessed Oct. 5, 2016). See Supporting Information for details.
  • 28 Blobaum AL, Marnett LJ. J. Med. Chem. 2007; 50: 1425-1425
  • 29 Chang C.-EA, Chen W, Gilson MK. Proc. Natl. Acad. Sci., U.S.A. 2007; 104: 1534-1534
    • 30a Bockelmann S, Menche D, Rudolph S, Bender T, Grond S, von Zezschwitz P, Muench SP, Wieczorek H, Huss M. J. Biol. Chem. 2010; 285: 38304-38304
    • 30b Dreisigacker S, Latek D, Bockelmann S, Huss M, Wieczorek H, Filipek S, Gohlke H, Menche D, Carlomagno T. J. Chem. Inf. Model 2012; 52: 2265-2265
    • 30c Menche D, Hassfeld J, Sasse F, Huss M, Wieczorek H. Bioorg. Med. Chem. Lett. 2007; 17: 1732-1732