Synthesis 2017; 49(04): 790-801
DOI: 10.1055/s-0036-1588405
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Catalytic Transformations Involving Copper Acetylides

A. Francis Adeleke
Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK   Email: ccordier@imperial.ac.uk
,
Alexander P. N. Brown
Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK   Email: ccordier@imperial.ac.uk
,
Li-Jie Cheng
Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK   Email: ccordier@imperial.ac.uk
,
Kari A. M. Mosleh
Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK   Email: ccordier@imperial.ac.uk
,
Christopher J. Cordier*
Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK   Email: ccordier@imperial.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 01 December 2016

Accepted after revision: 10 January 2017

Publication Date:
24 January 2017 (online)


Abstract

This review will discuss recent advances in catalytic transformations involving copper acetylides. The content is organized according to the site of functionalization: cross-couplings and direct nucleo­philicity (C1-functionalization), formal cycloadditions (C2-functionalization), and propargylic substitutions (C3-functionalization).

1 Introduction

2 Cross-Couplings

3 Direct Nucleophilicity

4 Formal Cycloadditions

5 Propargylic Substitutions

6 Conclusions and Perspectives

 
  • References

  • 1 Haynes WM. CRC Handbook of Chemistry and Physics . 93rd ed. CRC Press; Boca Raton: 2012
  • 2 Moen A, Nicholson DG. J. Chem. Soc., Faraday Trans. 1995; 91: 3529
  • 3 Dias HV. R, Flores JA, Wu J, Kroll P. J. Am. Chem. Soc. 2009; 131: 11249
  • 4 Hathaway BJ In Comprehensive Coordination Chemistry Wilkinson G. Vol. 5. Pergamon; Oxford: 1987: 533-757
  • 5 Carin CC, Seechurn J, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
  • 6 Fu GC. Acc. Chem. Res. 2008; 41: 1555
  • 7 Kambe N, Iwasaki T, Terao J. Chem. Soc. Rev. 2011; 40: 4937
  • 8 Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 16: 4467

    • For reviews, see:
    • 9a Chinchilla R, Nájera C. Chem. Rev. 2007; 107: 874
    • 9b Chinchilla R, Nájera C. Chem. Soc. Rev. 2011; 40: 5084
  • 10 Eckhardt M, Fu GC. J. Am. Chem. Soc. 2003; 125: 13642
  • 11 Altenhoff G, Goddard R, Lehmann CW, Glorius F. J. Am. Chem. Soc. 2004; 126: 15195
  • 12 Altenhoff G, Würtz S, Glorius F. Tetrahedron Lett. 2006; 47: 2925
    • 13a Xiao Q, Zhang Y, Wang J. Acc. Chem. Res. 2013; 46: 236
    • 13b Xia Y, Zhang Y, Wang J. ACS Catal. 2013; 3: 2586
  • 14 Barluenga J, Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
  • 15 Lei Z, Fei Y, Zhang Y, Wang J. J. Am. Chem. Soc. 2010; 132: 13590
  • 16 During the preparation of this manuscript, an enantioselective variant of this transformation was reported: Chu W.-D, Zhang L, Zhang Z, Zhou Q, Mo F, Zhang Y, Wang J. J. Am. Chem. Soc. 2016; 138: 14558
  • 17 Suárez A, Fu GC. Angew. Chem. Int. Ed. 2004; 43: 3580
  • 18 Xiao Q, Xia Y, Li H, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2011; 50: 1114
  • 19 Ye F, Ma X, Xiao Q, Li H, Zhang Y, Wang J. J. Am. Chem. Soc. 2012; 134: 5742
    • 20a Glaser C. Ber. Dtsch. Chem. Ges. 1869; 2: 422
    • 20b Hay AS. J.Org. Chem. 1960; 25: 1275
    • 20c Hay AS. J. Org. Chem. 1962; 27: 3320
  • 21 Sindhu KS, Anilkumar G. RSC Adv. 2014; 4: 27867
    • 22a Yin W, He C, Chen M, Zhang H, Lei A. Org. Lett. 2009; 11: 709
    • 22b Suarez JR, Collado-Sanz D, Cardenas DJ, Chiara JL. J. Org. Chem. 2015; 80: 1098
  • 23 Su L, Dong J, Liu L, Sun M, Qiu R, Zhou Y, Yin S. J. Am. Chem. Soc. 2016; 138: 12348
  • 24 Knopfel TF, Carreira EM. J. Am. Chem. Soc. 2003; 125: 6054
  • 25 Yazaki R, Kumagai N, Shibasaki M. J. Am. Chem. Soc. 2010; 132: 10275
  • 26 For a review concerning chiral anion control, see: Phipps RJ, Hamilton GL, Toste FD. Nat. Chem. 2012; 4: 603
  • 27 Yazaki R, Kumagai N, Shibasaki M. Chem. Asian J. 2011; 6: 1778
  • 28 Makida Y, Takayama Y, Ohmiya H, Sawamura M. Angew. Chem. Int. Ed. 2013; 52: 5350
  • 29 Harada A, Makida Y, Sato T, Ohmiya H, Sawamura M. J. Am. Chem. Soc. 2014; 136: 13932
  • 30 Chen Q, Tang Y, Huang T, Liu X, Lin L, Feng X. Angew. Chem. Int. Ed. 2016; 55: 5286
  • 31 Yu D, Zhang Y. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20184
    • 32a Maity P, Srinivas HD, Watson MP. J. Am. Chem. Soc. 2011; 133: 17142
    • 32b Srinivas HD, Maity P, Yap GP. A, Watson MP. J. Org. Chem. 2015; 80: 4003
  • 33 Dasgupta S, Rivas T, Watson MP. Angew. Chem. Int. Ed. 2015; 54: 14154
  • 34 Huisgen R. Proc. Chem. Soc. 1961; 357
  • 35 Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
  • 36 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
    • 37a Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 37b Moses JE, Moorhouse AD. Chem. Soc. Rev. 2007; 36: 1249
    • 38a Kolb HC, Sharpless KB. Drug Discovery Today 2003; 8: 1128
    • 38b Agalave SG, Maujan SR, Pore VS. Chem. Asian J. 2011; 6: 2696
    • 38c Meldal M, Tornøe CW. Chem. Rev. 2008; 108: 2952
    • 38d Hawker CJ, Wooley KL. Science (Washington, D. C.) 2005; 309: 1200
    • 38e Lallana E, Riguera R, Fernandez-Megia E. Angew. Chem. Int. Ed. 2011; 50: 8794
  • 39 Bock VD, Hiemstra H, van Maarseveen JH. Eur. J. Org. Chem. 2006; 51
  • 40 Worrell BT, Malik JA, Fokin VV. Science (Washington, D. C.) 2013; 340: 457
  • 41 Jin L, Tolentino DR, Melaimi M, Bertrand G. Sci. Adv. 2015; 1: e1500304
  • 42 Zhou F, Tan C, Tang J, Zhang Y.-Y, Gao W.-M, Wu H.-H, Yu Y.-H, Zhou J. J. Am. Chem. Soc. 2013; 135: 10994
    • 43a Brittain WD. G, Buckley BR, Fossey JS. Chem. Commun. 2015; 51: 17217
    • 43b Brittain WD. G, Buckley BR, Fossey JS. ACS Catal. 2016; 6: 3629
  • 44 Meng JC, Fokin VV, Finn MG. Tetrahedron Lett. 2005; 46: 4543
  • 45 Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. J. Am. Chem. Soc. 2005; 127: 210
  • 46 Nicasio MC, Pérez PJ, Cano I, Eleuterio Á. J. Am. Chem. Soc. 2011; 133: 191
  • 47 Kolodych S, Rasolofonjatovo E, Chaumontet M, Nevers MC, Créminon C, Taran F. Angew. Chem. Int. Ed. 2013; 52: 12056
  • 48 Specklin S, Decuypere E, Plougastel L, Aliani S, Taran F. J. Org. Chem. 2014; 79: 7772
  • 49 Steko S, Furman B, Chmielewski M. Tetrahedron 2014; 70: 7817
  • 50 Lo MM.-C, Fu GC. J. Am. Chem. Soc. 2002; 124: 4572
  • 51 Santoro S, Liao RZ, Marcelli T, Hammar P, Himo F. J. Org. Chem. 2015; 80: 2649
  • 52 Fürstner A, Stimson CC. Angew. Chem. Int. Ed. 2007; 46: 8845
  • 53 Imada Y, Yuasa M, Nakamura I, Murahashi S.-I. J. Org. Chem. 1994; 59: 2282

    • For related reviews, see:
    • 54a Ljungdahl N, Kann N. Angew. Chem. Int. Ed. 2009; 48: 642
    • 54b Miyake Y, Uemura S, Nishibayashi Y. ChemCatChem 2009; 1: 342
    • 54c Detz RJ, Hiemstra H, van Maarseveen JH. Eur. J. Org. Chem. 2009; 6263
    • 54d Ding C.-H, Hou X.-L. Chem. Rev. 2011; 111: 1914
    • 54e Nishibayashi Y. Synthesis 2012; 44: 489
    • 54f Bauer EB. Synthesis 2012; 44: 1131
    • 54g Zhang D.-Y, Hu X.-P. Tetrahedron Lett. 2015; 56: 283
    • 54h Hu X.-H, Liu Z.-T, Shao L, Hu X.-P. Synthesis 2015; 47: 913

      For selected examples, see:
    • 55a Zhu F.-L, Zou Y, Zhang D.-Y, Wang Y.-H, Hu X.-H, Chen S, Xu J, Hu X.-P. Angew. Chem. Int. Ed. 2014; 53: 1410
    • 55b Zhu F.-L, Wang Y.-H, Zhang D.-Y, Xu J, Hu X.-P. Angew. Chem. Int. Ed. 2014; 53: 10223
    • 55c Shao W, Li H, Liu C, Liu C.-J, You S.-L. Angew. Chem. Int. Ed. 2015; 54: 7684
    • 55d Shao L, Wang Y.-H, Zhang D.-Y, Xu J, Hu X.-P. Angew. Chem. Int. Ed. 2016; 55: 5014
    • 55e Wang Q, Li T.-R, Lu L.-Q, Li M.-M, Zhang K, Xiao W.-J. J. Am. Chem. Soc. 2016; 138: 8360
    • 55f Liu Z.-T, Wang Y.-H, Zhu F.-L, Hu X.-P. Org. Lett. 2016; 18: 1190
    • 55g Tsuchida K, Senda Y, Nakajima K, Nishibayashi Y. Angew. Chem. Int. Ed. 2016; 55: 9728
    • 55h Li T.-R, Cheng B.-Y, Wang Y.-N, Zhang M.-M, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2016; 55: 12422
    • 55i For a mechanistically distinct copper-catalyzed propargylic substitution, see: Sugiishi T, Kimura A, Nakamura H. J. Am. Chem. Soc. 2010; 132: 5332
  • 56 Detz RJ, Delville MM. E, Hiemstra H, van Maarseveen JH. Angew. Chem. Int. Ed. 2008; 47: 3777
  • 57 For a review concerning π–π interactions, see: Meyer EA, Castellano RK, Diedrich F. Angew. Chem. Int. Ed. 2003; 42: 1210
  • 58 Hattori G, Matsuzawa H, Miyake Y, Nishibayashi Y. Angew. Chem. Int. Ed. 2008; 47: 3781
  • 59 Hattori G, Sakata K, Matsuzawa H, Tanabe Y, Miyake Y, Nishibayashi Y. J. Am. Chem. Soc. 2010; 132: 10592
  • 60 Zhang C, Hu X.-H, Wang Y.-H, Zheng Z, Xu J, Hu X.-P. J. Am. Chem. Soc. 2012; 134: 9585
  • 61 Nakajima K, Shibata M, Nishibayashi Y. J. Am. Chem. Soc. 2015; 137: 2472
  • 62 Furuya T, Kamlet AS, Ritter T. Nature (London) 2011; 473: 470
  • 63 For a recent review, see: Wu J. Tetrahedron Lett. 2014; 55: 4289
  • 64 Cheng L.-J, Cordier CJ. Angew. Chem. Int. Ed. 2015; 54: 13734