RSS-Feed abonnieren
DOI: 10.1055/s-0036-1588367
Catalytic Prins Reaction Effected by Molecular Iodine in the Presence of Bis(trifluoromethanesulfonyl)imide Salts
Publikationsverlauf
Received: 03. November 2016
Accepted: 07. November 2016
Publikationsdatum:
09. Dezember 2016 (online)
Dedicated to Prof. Dieter Enders on the occasion of his 70th birthday
Abstract
The Prins reaction is an efficient method for the direct generation of 1,3-dioxanes from alkenes and aldehydes. As first published in 2008, this process can be effected by stoichiometric amounts of molecular iodine. We herein report a catalytic protocol allowing the use of iodine at low loading (0.5–5 mol%), smoothly effecting the condensation of styrenes with aliphatic aldehydes to rac-1,3-dioxanes. Moreover, this mild catalytic system effects the isomerization of the 1,3-dioxane products to the thermodynamically favored one. As a result, substituted rac-1,3-dioxanes were prepared in high yields (up to 92%), and with high diastereoselectivities (d.r. up to 82:18). For the application of iodine in catalytic amounts, the addition of pyridinium bis(trifluoromethanesulfonyl)imide (TFSI) salts in a 1:1 ratio to iodine is the key to success.
Key words
Prins reaction - catalysis - 1,3-dioxanes - molecular iodine - bis(trifluoromethanesulfonyl)imide saltsSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588367. Included are: the synthesis of the pyridinium salts 5–7·NTf2; catalytic condensation of 1 with 2 to give 3 on a preparative scale; NMR spectra of pyridinium salts, 1,3-dioxanes 3, mixture of iodine/7·NTf2, the reaction progress between 1a and 2a′; X-ray data of 5·NTf2 and 3haA;19 and UV/Vis spectra of iodine/TFSI salts.
- Supporting Information
-
References
- 2a Arundale E, Mikeska LA. Chem. Rev. 1952; 51: 505
- 2b Adams DR, Bhatnagar SP. Synthesis 1977; 661
- 2c Snider BB In Comprehensive Organic Synthesis . Vol. 2. Trost BM, Fleming I, Heathcook CH. Pergamon; New Yok: 1991: 527-561
-
2d Pastor IM, Yus M. Curr. Org. Chem. 2007; 11: 925
- 3a Sternson SM, Wong JC, Grozinger CM, Schreiber SL. Org. Lett. 2001; 3: 4239
- 3b Wong JC, Sternson SM, Luaca JB, Hong R, Schreiber SL. Chem. Biol. 2004; 11: 1279
- 3c Marucci G, Piero A, Brasili L, Buccioni M, Giardina D, Gulini U, Piergentili A, Sagratini G. Med. Chem. Res. 2005; 14: 274
- 3d Schmidt M, Ungvari J, Glode J, Dobner B, Langner A. Bioorg. Med. Chem. 2007; 15: 2283
- 3e Shang S, Tan DS. Curr. Opin. Chem. Biol. 2005; 9: 248
- 3f Sax M, Wünsch B. Curr. Top. Med. Chem. 2006; 6: 723
- 4a Kraft P, Bajgrowicz JA, Denis C, Fráter G. Angew. Chem. Int. Ed. 2000; 39: 2980
- 4b Chapuis C, Jacoby D. App. Catal., A 2001; 221: 93
- 4c Brenna E, Fuganti C, Serra S. Tetrahedron: Asymmetry 2003; 14: 1
- 5a Baer K, Kraußer M, Burda E, Hummel W, Berkessel A, Gröger H. Angew. Chem. Int. Ed. 2009; 48: 9355
- 5b Rulli G, Duangdee N, Baer K, Hummel W, Berkessel A, Gröger H. Angew. Chem. Int. Ed. 2011; 50: 7944
- 5c Heidlindemann M, Rulli G, Berkessel A, Hummel W, Gröger H. ACS Catal. 2014; 4: 1099
- 6a Delmas M, Gaset A. Synthesis 1980; 871
- 6b Thioville-Cazat J, Tkatchenko I. J. Chem. Soc., Chem. Commun. 1982; 1128
- 6c Tateiwa J.-I, Hashimoto K, Yamauchi T, Uemura S. Bull. Chem. Soc. Jpn. 1996; 69: 2361
- 6d Chandrasekhar S, Subba Reddy BV. Synlett 1998; 851
- 6e Aramendía MA, Borau V, Jiménez C, Marina JM, Romero FJ, Urbano FJ. Catal. Lett. 2001; 73: 203
- 6f Bach T, Löbel J. Synthesis 2002; 2521
- 6g Yadav JS, Reddy BV. S, Bhaishya G. Green Chem. 2003; 5: 264
- 6h Du Y, Tian F. Catal. Commun. 2007; 8: 2012
- 6i Gu Y, Karam A, Jérôme F, Barrault J. Org. Lett. 2007; 9: 3145
- 6j Wang W, Shao L, Cheng W, Yang J, He M. Catal. Commun. 2008; 9: 337
- 6k Amrute AP, Sahoo S, Bordoloi A, Hwang YK, Hwang J.-S, Halligudi SB. Catal. Commun. 2009; 10: 1404
- 7a el Gharbi R, Delmas M, Gaset A. Synthesis 1981; 361
- 7b el Gharbi R, Delmas M, Gaset A. Tetrahedron 1983; 39: 2953
- 7c el Gharbi R, Delmas M, Gaset A. Tetrahedron 1986; 42: 1191
- 7d el Gharbi R, Delmas M, Gaset A. Tetrahedron 1986; 42: 1199
- 7e Hao X, Yoshida A, Hoshi N. J. Fluorine Chem. 2007; 128: 1396
- 7f Borah KJ, Phukan M, Borah R. Synth. Commun. 2008; 38: 3082
- 8 Yadav JS, Reddy BV. S, Gopal AV. H, Kumar GG. K. S. N, Madavi C, Kunwar AC. Tetrahedron Lett. 2008; 49: 4420
- 9a Küpper FC, Feiters MC, Olofsson B, Kaiho T, Yanagida S, Zimmermann MB, Carpenter LJ, Luther III GW, Lu Z, Jonsson M, Kloo L. Angew. Chem. Int. Ed. 2011; 50: 11598
- 9b Finkbeiner P, Nachtsheim BJ. Synthesis 2013; 45: 979
- 9c Jinjin Z, Wenchao G, Honghong C, Xing L, Qiang L, Wenlong W. Chin. J. Org. Chem. 2014; 34: 1941
- 10a Berkessel A, Das S, Pekel D, Neudörfl J.-M. Angew. Chem. Int. Ed. 2014; 53: 11660
- 10b Das S, Pekel D, Neudörfl J.-M, Berkessel A. Angew. Chem. Int. Ed. 2015; 54: 12479
- 11 Zhang J, Martin GR, DesMarteau DD. Chem. Commun. 2003; 2334
- 12 Rueping M, Theissmann T, Kuenkel A, Koenigs RM. Angew. Chem. Int. Ed. 2008; 47: 6798
- 13 At the same concentration, 1H and 13C NMR spectra of a mixture of I2/7·NTf2 salt (1:1) in CD2Cl2 are virtually identical to those of free 7·NTf2, while the 19F NMR signal is slightly shifted from δ = 79.56 for 7·NTf2 to δ = 79.51 for I2/7·NTf2.
- 14 Attempts to crystallize an iodine complex of 6/7·NTf2 were unsuccessful, as iodine and 6/7·NTf2 always crystallized independently. In addition, iodine vapor is always observed from the solution.
- 15 Pennington WT, Hanks TW, Arman HD. Struct. Bonding (Berlin, Ger.) 2008; 126: 65
- 16 For a review on triflimidates, see: Antoniotti S, Dalla V, Duñach E. Angew. Chem. Int. Ed. 2010; 49: 7860
- 17 Under our catalytic conditions (5 mol% catalyst loading), the reactions of either aliphatic alkenes or aromatic aldehydes as substrates were very slow, trace amounts of products were observed.
- 18 Abate A, Brenna E, Fronza G, Fuganti C, Ronzani S, Serra S. Helv. Chim. Acta 2003; 86: 592 ; in this paper, a mixture of two isomers of 3ia was obtained by Prins reaction in ca. 1:1 ratio
- 19 CCDC 1502295 (3haA) and 1502296 (5·NTf2), contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
For reviews, see:
For reviews, see:
For reviews, see:
For catalytic Prins reactions of styrenes with formaldehyde (paraformaldehyde/formalin), see:
For catalytic Prins reactions of styrenes with aliphatic and aromatic aldehydes, see:
For reviews, see:
For 4·X, see: