Synlett 2017; 28(04): 481-484
DOI: 10.1055/s-0036-1588360
letter
© Georg Thieme Verlag Stuttgart · New York

Formal Syntheses of 5,8-Disubstituted Indolizidine Alkaloids (–)-205A, (–)-207A, and (–)-235B

Chada Raji Reddy*
Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India   Email: rajireddy@iict.res.in
,
Palacherla Ramesh
Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India   Email: rajireddy@iict.res.in
,
Bellamkonda Latha
Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India   Email: rajireddy@iict.res.in
› Author Affiliations
Further Information

Publication History

Received: 29 September 2016

Accepted after revision: 30 October 2016

Publication Date:
23 November 2016 (online)


Abstract

Formal total syntheses of (–)-indolizidines 205A, 207A, and 235B have been accomplished using Evans aldol, Horner–Wadsworth–Emmons olefination and reductive cyclization as key reactions.

Supporting Information

 
  • References and Notes

    • 1a Daly JW, Spande TF, Garrafo HM. J. Nat. Prod. 2005; 68: 1556
    • 1b Garrafo HM, Caceres J, Daly JW, Spande TF, Andriamaharavo NR, Andriantsiferana M. J. Nat. Prod. 1993; 56: 1016
    • 1c Michael JP. Nat. Prod. Rep. 2007; 24: 191
    • 1d Michael JP. Nat. Prod. Rep. 2008; 25: 139
    • 1e Gellest E. J. Nat. Prod. 1982; 45: 50
    • 1f Daly JW, Garraffo HM, Spande TF In Alkaloids: Chemical and Biological Perspectives. Vol. 13. Pelletier SW. Chap. 1 Pergamon Press; New York: 1999
    • 1g Michael JP. Alkaloids: Chem. Biol. Perspect. 2001; 55: 91
    • 1h Michael JP. Nat. Prod. Rep. 2001; 5: 520
    • 2a Daly JW, Spande TF In Alkaloids: Chemical and Biological Perspectives . Vol. 4. Chap. 1 Wiley; New York: 1986
    • 2b Witkop B, Gössinger E In The Alkaloids: Chemistry and Pharmacology . Vol. 21. Brossi A. Chap. 5 Academic Science; New York: 1983
    • 2c Daly JW, Brown GB, Dwumah MM, Myers CW. Toxicon 1978; 16: 163
    • 2d Dwumah MM, Daly JW. Toxicon 1978; 16: 189
    • 2e Daly JW, Myers CW, Whittaker N. Toxicon 1987; 25: 1023
    • 2f Daly JW, Spande TF, Garraffo HM. J. Nat. Prod. 2005; 68: 1556
    • 3a Tokuyama T, Nishimori N, Shimada A, Edwards MW, Daly JW. Tetrahedron. 1987; 43: 643
    • 3b Edwards MD, Daly JW, Myers CW. J. Nat. Prod. 1988; 51: 1188
    • 3c Daly JW. J. Med. Chem. 2003; 46: 445
    • 3d Michael JP. Nat. Prod. Rep. 2002; 19: 719
    • 3e Michel P, Rassat A. J. Org. Chem. 2000; 65: 8908
  • 4 Daly JM, Nishizawa Y, Padgett WL, Tokuyama T, Smith AL, Holmes AB, Kibayashi C, Aronstam RS. Neurochem. Res. 1991; 16: 1213
    • 5a Toyooka N, Kawasaki M, Nemoto H. Chem. Pharm. Bull. 2005; 53: 555
    • 5b Toyooka N, Tsuneki H, Kobayashi S, Zhou D, Kawasaki M, Kimura I, Sasaoka T, Nemoto H. Curr. Chem. Biol. 2007; 1: 97
    • 5c Tsuneki H, You Y, Toyooka N, Kagawa S, Kobayashi S, Sasaoka T, Nemoto H, Kimura I, Dani JA. Mol. Pharmcol. 2004; 66: 1061
    • 5d Kobayashi S, Toyooka N, Zhou D, Tsuneki H, Wada T, Sasaoka T, Sakai H, Nemoto H, Garaffo HM, Spande TF, Daly JM. Beilstein J. Org. Chem. 2007; 3: 30
    • 6a For the synthesis of indolizidines (–)-205A, (–)-207A, and (–)-235B, see:
    • 6b Smith AL, Williams SF, Holmes AB. J. Am. Chem. Soc. 1988; 110: 8696
    • 6c Holmes AB, Smith AL, Williams SF. J. Org. Chem. 1991; 56: 1393
    • 6d Shishido Y, Kibayashi C. J. Chem. Soc., Chem. Commun. 1991; 1237
    • 6e Momose T, Toyooka N. J. Org. Chem. 1994; 59: 943
    • 6f Comins DL, LaMunyon DH, Chen X. J. Org. Chem. 1997; 62: 8182
    • 6g Back TG, Nakajima K. J. Org. Chem. 2000; 65: 4543
    • 6h Toyooka N, Zhou D, Nemoto H, Garraffo M, Spande TF, Daly JW. Beilstein J. Org. Chem. 2007; 3: 29
    • 6i Song Y, Okamoto S, Sato F. Tetrahedron Lett. 2002; 43: 8635
    • 6j Taber DF, Rahimizadeh M, You KK. J. Org. Chem. 1995; 60: 529
    • 6k Polniaszek RP, Belmont SE. J. Org. Chem. 1991; 56: 4868
    • 7a Lei BL, Zhang QS, Yu WH, Ding QP, Ding CH, Hou XL. Org. Lett. 2014; 16: 1944
    • 7b Yu S, Zhu W, Ma D. J. Org. Chem. 2005; 70: 7364 209I and 223J:
    • 7c Lemonnier G, Charette AB. J. Org. Chem. 2010; 75: 7465
    • 7d Wong H, Amblard EC. G, Liebeskind LS. J. Am. Chem. Soc. 2011; 133: 7517
  • 8 Davis FA, Yang B. Org. Lett. 2003; 5: 5011
  • 9 Stoye A, Quandt G, Brunnhofer B, Kapatsina E, Baron J, Fischer A, Weymann M, Kunz H. Angew. Chem. Int. Ed. 2009; 48: 2228
  • 10 Abels F, Lindemann C, Koch E, Schneider C. Org. Lett. 2012; 14: 5972
    • 11a Rao NN, Cha JK. J. Am. Chem. Soc. 2015; 137: 2243
    • 11b Rao NN, Parida BB, Cha JK. Org. Lett. 2014; 16: 6208
    • 11c Abels F, Lindemann C, Schneider C. Chem. Eur. J. 2014; 20: 1964
    • 11d Toyooka N, Dejun Z, Nemoto H, Garraffo HM, Spande TF, Daly JW. Tetrahdron Lett 2006; 47: 577
    • 11e Enders D, Thiebes C. Synlett 2000; 1745
    • 12a Evans DA. Aldrichimica Acta 1982; 15: 23
    • 12b Ager DJ, Prakash I, Schaad DR. Aldrichimica Acta 1997; 30: 20
    • 12c Organ MG, Bilokin YV, Bratovanov S. J. Org. Chem. 2002; 67: 5176
    • 12d Sudau A, Muench W, Bats JW, Nubbemeyer Y. Eur. J. Org. Chem. 2002; 19: 3315
    • 13a Reddy CR, Latha B, Rao NN. Tetrahedron. 2012; 68: 145
    • 13b Reddy CR, Latha B. Tetrahedron: Asymmetry 2011; 22: 1849
    • 14a Crimmins MT, Debaillie AC. J. Am. Chem. Soc. 2006; 128: 4936
    • 14b Moreau B, Ginisty M, Alberico D, Charette AB. J. Org. Chem. 2007; 72: 1235
  • 15 Hiromasa K, Yukito F, Shigefumi K, Takayuki O. Biosci. Biotechnol. Biochem. 2001; 65: 2630
  • 17 Baldwin JE, Adlington RM, Sham VW, Marquez R, Bulger PG. Tetrahedron 2005; 61: 2353
    • 18a The cis stereoselectivity can be explained by the delivery of hydrogen from the less hindered side of the imine intermediate during the reductive amination step. See:
    • 18b Trost BM, Ball ZT, Laemmerhold KM. J. Am. Chem. Soc. 2005; 127: 10028
    • 18c Mitchell M, Qiao L, Wong CH. Adv. Synth. Catal. 2001; 343: 596
    • 18d Qiao L, Murray BW, Shimazaki M, Schultz J, Wong CH. J. Am. Chem. Soc. 1996; 118: 7653
    • 18e Look GC, Fotsch CH, Wong C.-H. Acc. Chem. Res. 1993; 26: 182
  • 19 Representative Procedures 3-{(2S,3R,6R)-6-[4-(tert-Butyldimethylsilyloxy)butyl]-3-methylpiperidin-2-yl}propan-1-ol (15) To a degassed solution of azido enone 5 (240 mg, 0.50 mmol) in EtOH (0.5 M) was added 10% Pd/C (5 mol%), and the heterogeneous mixture was stirred for 6 h under a hydrogen atmosphere at r.t. After filtration through Celite, the solvent was evaporated under reduced pressure, and the crude product was purified by column chromatography (silica gel, hexanes–EtOAc, 95:5) to afford piperidine 14 (144 mg, 83%) as a colorless oil. Rf = 0.50 (5% EtOAc in hexanes); [α]D 27 –22.6 (c 1.10, CHCl3). IR (KBr): 3281, 2971, 2859, 1820, 1645, 1414, 1242, 937, 779 cm–1. 1H NMR (300 MHz, CDCl3): δ = 4.12 (br s, 1 H), 3.68–3.44 (m, 4 H), 2.58–2.42 (m, 1 H), 2.27–2.18 (m, 1 H), 1.83–0.96 (m, 15 H), 0.85 (s, 9 H), 0.81 (d, J = 6.7 Hz, 3 H), 0.01 (s, 6 H). 13C NMR (75 MHz, CDCl3): δ = 62.9, 61.2, 57.9, 39.3, 35.9, 34.9, 33.3, 29.8, 25.9, 22.4, 18.4, –5.4. ESI-MS: m/z 366 [M + Na]+. HRMS (EI): m/z calcd for C19H42O2NSi [M + H]+: 344.6344; found. 344.6347. 4-[(5R,8R,8aS)-8-Methyloctahydroindolizin-5-yl]butan-1-ol (4) To 15 (93 mg, 3.4 mmol) was added 0.1 N concentrated HCl (1.7 mL) in EtOH, and the mixture was stirred for 1 h at r.t. After the completion of reaction (monitored by TLC) the EtOH was evaporated under reduced pressure and 5% HCl (1.0 mL) added. The aqueous layer was washed with Et2O (3 × 10 mL) and then basified with 2 N NaOH solution. The aqueous layer was extracted with Et2O (2 × 10 mL), and the combined extracts dried over Na2SO4, filtered, and evaporated under reduced pressure to furnish 4 (44 mg, 74%) as yellow oil. Rf = 0.50 (5% MeOH in EtOAc). [α]D 27 –93.2 (c 0.5, MeOH). IR (KBr): νmax = 3289, 3063, 2955, 2858, 1690, 1524, 1415, 1279, 1127, 1057, 838, 775 cm–1. 1H NMR (300 MHz, CDCl3): δ = 3.61 (t, J = 6.4 Hz, 2 H), 3.30 (dt, J = 8.3, 2.0 Hz, 1 H), 2.04–1.20 (m, 18 H), 0.95 (dq, J = 11.8, 4.4 Hz, 1 H), 0.85 (d, J = 6.6 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 71.2, 63.3, 62.6, 51.8, 36.4, 33.6, 33.1, 31.1, 29.6, 29.0, 22.0, 19.6, 18.8. ESI-MS: m/z = 326 [M + H]+. HRMS (EI): m/e calcd for C13H26NO [M + H]+: 212.2009; found: 212.2012.