Synlett 2017; 28(02): 175-194
DOI: 10.1055/s-0036-1588351
account
© Georg Thieme Verlag Stuttgart · New York

Recent Achievements in Carbonylation Reactions: A Personal Account

Jin-Bao Peng
a   Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou, Zhejiang Province 310018, P. R. of China   Email: xiao-feng.wu@catalysis.de
,
Xinxin Qi
a   Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou, Zhejiang Province 310018, P. R. of China   Email: xiao-feng.wu@catalysis.de
,
Xiao-Feng Wu*
a   Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou, Zhejiang Province 310018, P. R. of China   Email: xiao-feng.wu@catalysis.de
b   Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
› Author Affiliations
Further Information

Publication History

Received: 29 September 2016

Accepted after revision: 21 October 2016

Publication Date:
30 November 2016 (online)


Dedicated to Prof. Matthias Beller on the occasion of his birthday.

Abstract

This account summarizes predominately our recent endeavors in developing CO gas-free carbonylation reactions and the application of carbonylation reactions in the synthesis of heterocycles. Mo(CO)6, aldehydes, DMF, formic acid and its esters were employed as greener CO sources, and a series of palladium-catalyzed gas-free carbonylation reactions, including reductive carbonylation, amino- and alkoxycarbonylations, as well as carbonylative coupling reactions have been developed. Besides, we developed a series of carbonylation-based domino reactions for the rapid construction of heterocyclic compounds.

1 Introduction

2 Green Carbonyl Sources

2.1 Mo(CO)6 as the CO Source

2.2 DMF as the CO Source

2.3 Formic Acid and Formates as the CO Sources

3 Carbonylative Synthesis of Heterocycles

3.1 Insertion of One CO Molecule

3.1.1 Intramolecular Nucleophilic Cyclization of Acyl Palladium

3.1.2 Intermolecular Nucleophilic Cyclization of Acyl Palladium

3.1.3 Cyclization through Nucleophilic Substitution

3.2 Insertion of Two CO Molecules

4. Conclusion

 
  • References

    • 1a Schoenberg A, Bartoletti I, Heck RF. J. Org. Chem. 1974; 39: 3318
    • 1b Schoenberg A, Heck RF. J. Org. Chem. 1974; 39: 3327

      For selected reviews see:
    • 2a Brennführer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
    • 2b Wu X.-F, Neumann H, Beller M. Chem. Soc. Rev. 2011; 40: 4986
    • 2c Sumino S, Fusano A, Fukuyama T, Ryu I. Acc. Chem. Res. 2014; 47: 1563
  • 3 Dekleva TW, Forster D. J. Am. Chem. Soc. 1985; 107: 3565
  • 4 Haynes A, Maitlis PM, Morris GE, Sunley GJ, Adams H, Badger PW, Bowers CM, Cook DB, Elliott PI. P, Ghaffar T, Green H, Griffin TR, Payne M, Pearson JM, Taylor MJ, Vickers PW, Watt RJ. J. Am. Chem. Soc. 2004; 126: 2847
    • 5a Colquhoun HM, Thompson DJ, Twigg MV. Carbonylation: Direct Synthesis of Carbonyl Compounds . Plenum Press; New York: 1991
    • 5b Beller M, Wu X.-F. Carbonylative Activation of CX Bonds. In Transition Metal Catalyzed Carbonylation Reactions. Springer; Berlin and Heidelberg: 2013
    • 5c Kollär L. Modern Carbonylation Methods . Wiley-VCH; Weinheim: 2008
  • 6 Friis SD, Lindhardt AT, Skrydstrup T. Acc. Chem. Res. 2016; 49: 594

    • For an excellent review on this topic using Mo(CO)6 as the CO source see:
    • 7a Odell LR, Russo F, Larhed M. Synlett 2012; 685

    • For selected examples, see:
    • 7b Wannberg J, Larhed M. J. Org. Chem. 2003; 68: 5750
    • 9a Morimoto T, Fuji K, Tsutsumi K, Kakiuchi K. J. Am. Chem. Soc. 2002; 124: 3806
    • 9b Shibata T, Toshida N, Takagi K. Org. Lett. 2002; 4: 1619
    • 9c Morimoto T, Yamasaki K, Hirano A, Tsutsumi K, Kagawa N, Kakiuchi K, Harada Y, Fukumoto Y, Chatani N, Nishioka T. Org. Lett. 2009; 11: 1777
    • 9d Li W, Wu X.-F. J. Org. Chem. 2014; 79: 10410
    • 9e Natte K, Dumrath A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2014; 53: 10090
    • 9f Murphy SK, Park J.-W, Cruz FA, Dong VM. Science 2015; 347: 56
    • 10a Cacchi S, Fabrizi G, Goggiamani A. Org. Lett. 2003; 5: 4269
    • 10b Cacchi S, Fabrizi G, Goggiamani A. J. Comb. Chem. 2004; 6: 692
    • 10c Korsager S, Taaning RH, Skrydstrup T. J. Am. Chem. Soc. 2013; 135: 2891
    • 10d Hou J, Xie J.-H, Zhou Q.-L. Angew. Chem. Int. Ed. 2015; 54: 6302
    • 10e Qi X, Li C.-L, Jiang L.-B, Zhang W.-Q, Wu X.-F. Catal. Sci. Technol. 2016; 6: 3099
    • 10f Qi X, Li C.-L, Wu X.-F. Chem. Eur. J. 2016; 22: 5835
    • 10g Jiang LB, Li R, Li HP, Qi X, Wu X.-F. ChemCatChem 2016; 8: 1788
    • 11a Ueda T, Konishi H, Manabe K. Org. Lett. 2012; 14: 4722
    • 11b Ueda T, Konishi H, Manabe K. Angew. Chem. Int. Ed. 2013; 52: 8611
    • 11c Ueda T, Konishi H, Manabe K. Org. Lett. 2012; 14: 5370
    • 11d Ueda T, Konishi H, Manabe K. Tetrahedron Lett. 2012; 53: 5171
    • 11e Ueda T, Konishi H, Manabe K. Org. Lett. 2012; 14: 3100
    • 11f Ko S, Lee C, Choi M.-G, Na Y, Chang S. J. Org. Chem. 2003; 68: 1607
    • 11g Katafuchi Y, Fujihara T, Iwai T, Terao J, Tsuji Y. Adv. Synth. Catal. 2011; 353: 475
    • 11h Fujihara T, Hosoki T, Katafuchi Y, Iwai T, Terao J, Tsuji Y. Chem. Commun. 2012; 8012
    • 11i Ko S, Na Y, Chang S. J. Am. Chem. Soc. 2002; 124: 750
    • 11j Schareina T, Zapf A, Gotta M, Beller M. Adv. Synth. Catal. 2010; 352: 1205
  • 12 Jafarpour F, Rashidi-Ranjbar P, Kashani AO. Eur. J. Org. Chem. 2011; 2128
  • 13 Sävmarker J, Lindh J, Nilsson P. Tetrahedron Lett. 2010; 51: 6886
  • 14 Iizuka M, Kondo Y. Eur. J. Org. Chem. 2007; 5180
  • 15 Wu X.-F, Oschatz S, Sharif M, Flader A, Krey L, Beller M, Langer P. Adv. Synth. Catal. 2013; 355: 3581
  • 16 Zapf A, Ehrentraut A, Beller M. Angew. Chem. Int. Ed. 2000; 39: 4153
  • 17 Wu X.-F, Oschatz S, Sharif M, Langer P. Synthesis 2015; 47: 2641
    • 18a Wang Z, Li Y, Zhu F, Wu X.-F. Adv. Synth. Catal. 2016; 358: 2855
    • 18b Chen J, Natte K, Spannenberg A, Neumann H, Beller M, Wu X.-F. Chem. Eur. J. 2014; 20: 14189

      For an excellent review on DMF appications see:
    • 19a Ding S, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 9226

    • For selected examples, see:
    • 19b Wan Y, Alterman M, Larhed M, Hallberg A. J. Org. Chem. 2002; 67: 6232
    • 19c Hosoi K, Nozaki K, Hiyama T. Org. Lett. 2002; 4: 2849
    • 19d Tambade PJ, Patil YP, Bhanushali MJ, Bhanage BM. Tetrahedron Lett. 2008; 49: 2221
    • 19e Sawant DN, Wagh YS, Bhatte KD, Bhanage BM. J. Org. Chem. 2011; 76: 5489
    • 19f Wu X, Zhao Y, Ge H. J. Am. Chem. Soc. 2015; 137: 4924
  • 20 Chen J, Feng J, Natte K, Wu X.-F. Chem. Eur. J. 2015; 21: 16370
  • 21 Chen J, Natte K, Wu X.-F. Tetrahedron Lett. 2015; 56: 6413
    • 22a Ueda T, Konishi H, Manabe K. Org. Lett. 2013; 15: 5370
    • 22b Ueda T, Konishi H, Manabe K. Angew. Chem. Int. Ed. 2013; 52: 8611
    • 22c Ueda T, Konishi H, Manabe K. Org. Lett. 2012; 14: 5370
    • 22d Ueda T, Konishi H, Manabe K. Tetrahedron Lett. 2012; 53: 5171
    • 22e Ueda T, Konishi H, Manabe K. Org. Lett. 2012; 14: 3100
  • 23 Fujihara T, Hosoki T, Katafuchi Y, Iwai T, Terao J, Tsuji Y. Chem. Commun. 2012; 48: 8012
  • 24 Li H, Neumann H, Beller M, Wu X.-F. Angew. Chem. Int. Ed. 2014; 53: 3183

    • For selected examples see:
    • 25a Kobayashi T, Tanaka M. J. Chem. Soc., Chem. Commun. 1981; 333
    • 25b Kang S, Lim K, Ho P, Kim W. Synthesis 1997; 874
    • 25c Mohamed Ahmed MS, Mori A. Org. Lett. 2003; 5: 3057
    • 25d Fukuyama T, Yamaura R, Ryu I. Can. J. Chem. 2005; 83: 711
    • 25e Rahman MT, Fukuyama T, Kamata N, Sato M, Ryu I. Chem. Commun. 2006; 2236
    • 25f Tambade PJ, Patil YP, Nandurkar NS, Bhanage BM. Synlett 2008; 886
    • 25g Liu J, Peng X, Sun W, Zhao Y, Xia C. Org. Lett. 2008; 10: 3933
    • 25h Wu X.-F, Neumann H, Beller M. Chem. Eur. J. 2010; 16: 12104
    • 25i Wu X.-F, Sundararaju B, Anbarasan P, Neumann H, Dixneuf PH, Beller M. Chem. Eur. J. 2011; 17: 8014
    • 25j Wu X.-F, Neumann H, Beller M. Angew. Chem. Int. Ed. 2011; 50: 11142
  • 26 Qi X, Jiang L.-B, Li C.-L, Li R, Wu X.-F. Chem. Asian J. 2015; 10: 1870
  • 27 Qi X, Jiang L.-B, Li H.-P, Wu X.-F. Chem. Eur. J. 2015; 21: 17650
  • 28 Qi X, Li C.-L, Jiang L.-B, Zhang W.-Q, Wu X.-F. Catal. Sci. Technol. 2016; 6: 3099
    • 29a Qi X, Li C.-L, Wu X.-F. Chem. Eur. J. 2016; 22: 5835
    • 29b Qi X, Li H.-P, Wu X.-F. Chem. Asian J. 2016; 11: 2453
    • 29c Qi X, Li R, Wu X.-F. RSC Adv. 2016; 6: 62810
  • 30 Jiang LB, Li R, Li HP, Qi X, Wu X.-F. ChemCatChem 2016; 8: 1788
  • 31 Jiang L.-B, Qi X, Wu X.-F. Tetrahedron Lett. 2016; 57: 3368
  • 32 Wu X.-F, Neumann H, Neumann S, Beller M. Chem. Eur. J. 2012; 18: 8596
  • 33 Wu X.-F, Neumann H, Beller M. Chem. Eur. J. 2012; 18: 12599
  • 34 Wu X.-F, Sharif M, Shoaib K, Neumann H, Pews-Davtyan A, Langer P, Beller M. Chem. Eur. J. 2013; 19: 6230
  • 35 Li W, Wu X.-F. J. Org. Chem. 2014; 79: 10410
  • 36 Seger C, Vajrodaya S, Greger H, Hofer O. Chem. Pharm. Bull. 1998; 46: 1926
    • 37a Connolly DJ, Cusack D, O’Sullivan TP, Guiry PJ. Tetrahedron 2005; 61: 10153
    • 37b He L, Li H, Chen J, Wu X.-F. RSC Adv. 2014; 4: 12065
  • 38 He L, Sharif M, Neumann H, Beller M, Wu X.-F. Green Chem. 2014; 16: 3763
  • 39 He L, Li H, Neumann H, Beller M, Wu X.-F. Angew. Chem. Int. Ed. 2014; 53: 1420
  • 40 Encyclopedia of Chinese Medicine . Peoples Republic of China; Shanghai: 1977
  • 41 Bergman J, Bergman S. J. Org. Chem. 1985; 50: 1246
  • 42 Wu X.-F, Neumann H, Beller M. Chem. Eur. J. 2012; 18: 12595
  • 43 Wu X.-F, Wu L, Jackstell R, Neumann H, Beller M. Chem. Eur. J. 2013; 19: 12245
  • 44 Wu X.-F, He L, Neumann H, Beller M. Chem. Eur. J. 2013; 19: 12635
  • 45 Li H, He L, Neumann H, Beller M, Wu X.-F. Green Chem. 2014; 16: 1336
  • 46 Chen J, Natte K, Neumann H, Wu X.-F. RSC Adv. 2014; 4: 56502
  • 47 Chen J, Natte K, Spannenberg A, Neumann H, Langer P, Beller M, Wu X.-F. Angew. Chem. Int. Ed. 2014; 53: 7579
  • 48 Chen J, Natte K, Neumann H, Wu X.-F. Chem. Eur. J. 2014; 20: 16107
  • 49 Shen C, Li W, Yin H, Spannenberg A, Skrydstrup T, Wu X.-F. Adv. Synth. Catal. 2016; 358: 466
    • 50a Shen C, Neumann H, Wu X.-F. Green Chem. 2015; 17: 2994
    • 50b Shen C, Wu X.-F. Catal. Sci. Technol. 2015; 5: 4433
  • 51 Shen C, Spannenberg A, Wu X.-F. Angew. Chem. Int. Ed. 2016; 55: 5067
    • 52a Sohár P, Csámpai A, Szabó AE, Stájer G. J. Mol. Struct. 2004; 694: 139
    • 52b Kshirsagar UA, Argade NP. Tetrahedron 2009; 65: 5244
  • 53 Li H, Li W, Spannenberg A, Baumann W, Neumann H, Beller M, Wu X.-F. Chem. Eur. J. 2014; 20: 8541
  • 54 Natte K, Chen J, Li H, Neumann H, Beller M, Wu X.-F. Chem. Eur. J. 2014; 20: 14184
  • 55 Shen C, Man NY. T, Stewart S, Wu X.-F. Org. Biomol. Chem. 2015; 13: 4422
  • 56 Chen J, Neumann H, Beller M, Wu X.-F. Org. Biomol. Chem. 2014; 12: 5835