Synlett 2017; 28(03): 353-356
DOI: 10.1055/s-0036-1588346
letter
© Georg Thieme Verlag Stuttgart · New York

Selective Addition of Carbamoylsilane to Vicinal Diketones: Highly Efficient Synthesis of β-Keto-α-hydroxyamides

Pei Cao
College of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, P. R. of China   eMail: jjxxcc2002@yahoo.com
,
Xueping Wen
College of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, P. R. of China   eMail: jjxxcc2002@yahoo.com
,
Jianxin Chen*
College of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, P. R. of China   eMail: jjxxcc2002@yahoo.com
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 14. August 2016

Accepted after revision: 15. Oktober 2016

Publikationsdatum:
07. November 2016 (online)


Abstract

The selective addition of carbamoylsilane to vicinal diketones in toluene solvent at 110 °C affords β-keto-α-siloxyamide derivatives in good yields (54–99%). The steric hindrance is an important factor in the addition reaction.

Supporting Information

 
  • References and Notes

    • 1a Park J.-H, Chang J.-S, El-Gamal MI, Choi W.-K, Lee WS, Chung HJ, Kim H.-I, Cho Y.-J, Lee B.-S, Jeon HR, Lee YS, Choi YW, Lee J, Oh CH. Bioorg. Med. Chem. Lett. 2010; 20: 5895
    • 1b Amada H, Matsuda D, Bohno A. WO 2011034215, 2011
    • 1c Yang K, Huang J, Eisele F. WO 2013163889, 2013
    • 2a Zhu J, Klunder AJ. H, Zwanenburg B. Tetrahedron Lett. 1994; 35: 2787
    • 2b Christoffers J, Werner T, Frey W, Baro A. Chem. Eur. J. 2004; 10: 1042
    • 2c Wellington KD, Cambie RC, Rutledge PS, Bergquist PR. J. Nat. Prod. 2000; 63: 79
    • 3a Racv LD, Frey W, Ivanov IC. Synlett 2004; 1584
    • 3b Li S, Wang S. J. Heterocycl. Chem. 2008; 45: 1875
    • 3c Wang J.-W, Yuan Y.-C, Xiong R, Zhang D, Du Y.-F, Zhao K. Org. Lett. 2012; 14: 2210
    • 4a Yoshioka M, Nishioka T, Hasegawa T. J. Org. Chem. 1993; 58: 278
    • 4b Davis FA, Liu H, Chen B.-C, Zhou P. Tetrahedron 1998; 54: 10481
    • 4c Li D.-M, Schröder K, Bitterlich B, Tse MK, Beller M. Tetrahedron Lett. 2008; 49: 5976
    • 4d Duschek A, Kirsch SF. Chem. Eur. J. 2009; 15: 10713
    • 4e Yu J, Cui J.-A, Zhang C. Eur. J. Org. Chem. 2010; 7020
    • 4f Takechi S, Kumagai N, Shibasaki M. Tetrahedron Lett. 2011; 52: 2140
    • 4g Asahara H, Nishiwaki N. J. Org. Chem. 2014; 79: 11735
    • 5a Ziegler E, Wittmann H, Sterk H. Monatsh. Chem. 1989; 120: 907
    • 5b Perez DG, Nudelman NS. J. Org. Chem. 1988; 53: 408
    • 5c Muthusamy S, Gnanaprakasam B. Tetrahedron Lett. 2007; 48: 6821
    • 5d Ektin N, Babu SD, Fooks CJ, Durst T. J. Org. Chem. 1990; 55: 1093
    • 5e Chen B.-C, Zhou P, Davis FA, Ciganek E. Org. React. 2003; 62: 1
  • 6 Yao Y, Li W.-D, Chen J.-X. Chin. J. Org. Chem. 2014; 34: 2124
  • 7 Ruan L, Shi M, Li N, Ding X, Yang F, Tang J. Org. Lett. 2014; 16: 733
  • 8 Schöllkopf U, Beckhaus H. Angew. Chem., Int. Ed. Engl. 1976; 15: 293
  • 9 Cunico RF, Motta AR. Org. Lett. 2005; 7: 771
  • 10 General Procedure for the Preparation of β-keto-α-Siloxyamides 3 or 5 A Schlenk tube fitted with a Teflon vacuum stopcock and micro stirbar was flame-heated under vacuum and refilled with Ar. Vicinal diketones 2 (0.50 mmol) and 1.5 mL of anhydrous toluene was added at ice bath temperature. After 20 min, 1.2 equiv of carbamoylsilane (0.60 mmol) was added, and the reaction mixture was stirred at 110 °C until complete consumption of the carbamoylsilane (TLC). Volatiles were then removed under vacuum and the residue was chromatographed using PE–EtOAc as eluent to obtain β-keto-α-siloxyamides 3 (or 5). Characterization Data for Typical β-Keto-α-siloxyamides All NMR spectra were obtained in CDCl3 unless otherwise indicated. Compound 3a: white solid; yield 99% (176 mg, 0.5 mmol); mp 125.0–127.0 °C. IR: 1651, 1395, 1245, 1112 cm–1. 1H NMR (600 MHz, CDCl3): δ = 7.87–7.32 (m, 10 H), 3.00 (s, 3 H), 2.85 (s, 3 H), 0.11 (s, 9 H). 13C NMR (151 MHz, CDCl3): δ = 197.2, 170.6, 139.1, 136.0, 132.2, 130.0, 128.3, 128.0, 127.8, 88.7, 38.3, 36.9, 2.0. Anal. Calcd for C20H25NO3Si: C, 67.57; H, 7.09; N, 3.94. Found: C, 67.31; H, 7.13; N, 3.77. Compound 3d: colorless liquid, yield 63% (85 mg, 0.52 mmol). IR: 1719, 1651, 1390, 1252, 1150, 1099, 1058 cm–1. 1H NMR: δ = 2.93 (s, 3 H), 2.89 (s, 3 H), 2.21, 1.57 (ss, 3 H), 2.67–1.17 (m, 4 H), 0.92 (t, J = 7.2 Hz, 3 H), 0.17, 0.16 (ss, 9 H). 13C NMR: δ = 210.0, 207.7, 170.2, 169.7, 87.4, 84.7, 39.4, 37.9, 37.4, 37.3, 36.7, 36.6, 25.6, 24.5, 17.0, 16.9, 14.3, 13.7, 1.6, 1.5. Anal. Calcd for C12H25NO3Si: C, 55.56; H, 9.71; N, 5.40. Found: C, 55.64; H, 9.55; N, 5.31. Compound 3e: yellowish solid, yield 63% (92 mg, 0.5 mmol), mp 82.0–83.0 °C. IR: 1731, 1639, 1395, 1253, 1182, 1132 cm–1. 1H NMR: δ = 7.39–7.33 (m, 5 H), 3.00, 2.99 (ss, 3 H), 2.78, 2.77 (ss, 3 H), 2.05, 2.04 (ss, 3 H), 0.23, 0.22 (ss, 9 H). 13C NMR: δ = 204.0, 171.0, 139.1, 128.8, 128.4, 125.8, 88.6, 38.3, 36.1, 27.6, 2.3, 2.1, 1.9. Anal. Calcd for C15H23NO3Si: C, 61.40; H, 7.90; N, 4.77. Found: C, 61.18; H, 7.61; N, 4.65. Compound 3f: colorless liquid, yield 89% (115 mg, 0.49 mmol). IR: 3353, 1686, 1640, 1366, 1235, 1129, 1048, 691 cm–1. 1H NMR: δ = 8.02–7.41 (m, 5 H), 3.00 (s, 3 H), 2.85 (s, 3 H), 2.79 (s, 1 H), 2.12, 2.11 (dd, J = 1.8 Hz, 2 H), 1.75–1.72 (m, 1 H), 0.93 (d, J = 6.6 Hz, 3 H), 0.89 (d, J = 6.6 Hz, 3 H). 13C NMR: δ = 197.6, 171.3, 134.6, 133.5, 129.5, 128.9, 128.6, 125.9, 81.7, 44.1, 37.7, 37.2, 24.6, 23.9, 23.4, 22.2. Anal. Calcd for C15H21NO3: C, 68.42, H,8.04, N, 5.32. Found: C, 68.20; H, 7.98; N, 5.57. Compound 5c: yellowish liquid, yield 64% (90 mg, 0.51 mmol). IR: 1723, 1663, 1458, 1393, 1253, 1151 cm–1. 1H NMR: δ = 5.02–4.48 (m, 2 H), 3.33, 3.32, 3.21, 3.19 (ssss, 3 H), 2.97, 2.94, 2.89, 2.85 (ssss, 3 H), 2.83–2.05 (m, 2 H), 2.26, 2.17, 1.63, 1.60 (ssss, 3 H), 1.09, 0.92 (tt, J = 7.8 Hz, 3 H), 0.20, 0.18 (ss, 9 H). 13C NMR: δ = 211.3, 207.8, 171.8, 88.7, 84.9, 80.4, 80.3, 79.1, 78.9, 56.1, 56.0, 55.2, 34.1, 33.8, 33.5, 30.1, 29.8, 29.7, 29.2, 25.7, 25.4, 24.5, 8.4, 8.1, 7.7, 7.6, 1.8, 1.7. Anal. Calcd for C12H25NO4Si: C, 52.33; H, 9.15; N, 5.09. Found: C, 52.58; H, 9.36; N, 5.30. Compound 5f: yellowish liquid, yield 71% (130 mg, 0.50 mmol). IR: 1655, 1446, 1393, 1251, 1104 cm–1. 1H NMR: δ = 7.45–7.35 (m, 5 H), 4.88–4.36 (m, 2 H), 3.41, 2.97 (ss, 3 H), 2.77, 2.69 (ss, 3 H), 2.65–2.57 (m, 1 H), 2.06–1.87 (m, 2 H), 0.88, 0.85 (dd, J = 6.6 Hz, 3 H), 0.55, 0.51 (dd, J = 6.6 Hz, 3 H), 0.26, 0.23 (ss, 9 H). 13C NMR: δ = 197.3, 195.8, 172.1, 135.1, 132.9, 132.6, 129.8, 128.5, 128.4, 128.2, 128.1, 126.3, 125.9, 87.1, 86.7, 80.1, 79.5, 56.4, 55.2, 46.7, 34.2, 33.9, 24.2, 24.1, 24.0, 22.4, 22.3, 1.9. Anal. Calcd for C19H31NO4Si: C, 62.43; H, 8.55; N, 3.83. Found: C, 62.28; H, 8.75; N, 3.62. Compound 3b: colorless liquid, yield 86% (102 mg, 0.51 mmol). Compound 3c: colorless liquid, yield 72% (87 mg, 0.49 mmol). Compound 3e′: colorless liquid, yield 32% (45 mg, 0.5 mmol). Compound 5a: yellowish liquid, yield 93% (179 mg, 0.50 mmol). Compound 5b: colorless liquid, yield 72% (96 mg, 0.51 mmol). Compound 5d: colorless liquid, yield 54% (78 mg, 0.50 mmol). Compound 5e: colorless liquid, yield 52% (82 mg, 0.49 mmol). Compound 5e′: slightly brown liquid, yield 24% (38 mg, 0.49 mmol).