Synlett 2017; 28(03): 362-370
DOI: 10.1055/s-0036-1588337
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Annulated Arenes and Heteroarenes by Hydriodic Acid and Red Phosphorus Mediated Reductive Cyclization of 2-(Hetero)aroylbenzoic Acids or 3-(Hetero)arylphthalides

Settu Muhamad Rafiq
Department of Organic Chemistry, School of Chemical Sciences, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India   Email: mohanakrishnan@unom.ac.in   Email: mohan_67@hotmail.com
,
Arasambattu K. Mohanakrishnan*
Department of Organic Chemistry, School of Chemical Sciences, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India   Email: mohanakrishnan@unom.ac.in   Email: mohan_67@hotmail.com
› Author Affiliations
Further Information

Publication History

Received: 11 August 2016

Accepted after revision: 29 September 2016

Publication Date:
17 October 2016 (online)


Abstract

Annulated arenes and hetarenes were prepared in good to very good yields by hydriodic acid/red phosphorus mediated reductive cyclization of 3-(hetero)aryl phthalides. The reductive cyclization also proceeded successfully with 2-aroylbenzoic acids and 2-aroylnaphthoic acids.

Supporting Information

 
  • References and Notes

    • 1a Heckmann A, Lambert C. Angew. Chem. Int. Ed. 2012; 51: 326
    • 1b Heimel G, Salzmann I, Duhm S, Koch N. Chem. Mater. 2011; 23: 359
    • 1c Lo S.-C, Burn PL. Chem. Rev. 2007; 107: 1097
    • 1d Anthony JE. Chem. Rev. 2006; 106: 5028
    • 2a Kobayashi K, Masu H, Shuto A, Yamaguchi K. Chem. Mater. 2005; 17: 6666
    • 2b Nerungsi C, Wanitchang P, Sahasithiwat S, Sadorn K, Kerdcharoen T, Thongpanchang T. Tetrahedron Lett. 2010; 51: 6392
    • 3a Bradsher CK. Chem. Rev. 1987; 87: 1277
    • 3b Mamada M, Minamiki M, Katagiri H, Tokito S. Org. Lett. 2012; 14: 4062
    • 3c Okamoto K, Kawamura T, Sone M, Ogino K. Liq. Cryst. 2007; 34: 1001
    • 3d Surya Prakash GK, Panja C, Shakhmin A, Shah E, Mathew T, Olah GA. J. Org. Chem. 2009; 74: 8659
    • 3e Sereviĉius T, Adomėnas P, Adomėnienė O, Rimkus R, Jankauskas V, Gruodis A, Kazlauskas K, Jurŝėnas S. Dyes Pigm. 2013; 98: 304
    • 4a Kuninobu Y, Tatsuzaki T, Matsuki T, Takai K. J. Org. Chem. 2011; 76: 7005
    • 4b Yu X, Lu X. Adv. Synth. Catal. 2011; 353: 569
    • 4c Rafiq SM, Sivasakthikumaran R, Karunakaran J, Mohanakrishnan AK. Eur. J. Org. Chem. 2015; 5099
  • 5 Coffey S, Boyd V. J. Chem. Soc. 1954; 2468
  • 6 Manning WB, Muechik GM, Tomaszweski JE. J. Org. Chem. 1979; 44: 699
    • 7a Bradsher CK. Chem. Rev. 1946; 38: 447
    • 7b Fitzgerald JF, Drysdale NE, Olofson RA. J. Org. Chem. 1992; 57: 7122
  • 8 Trahanovsky WS, Tunkel JL, Thoen JC, Wang YJ. J. Org. Chem. 1996; 60: 8407
    • 9a Kodomari M, Nagamatsu M, Akaike M, Aoyama T. Tetrahedron Lett. 2008; 49: 2537
    • 9b Yamato T, Sakaue N, Shinoda N, Matsuo K. J. Chem. Soc., Perkin Trans. 1 1997; 1193
    • 9c Ahmed M, Ashby J, Ayad M, Meth-Cohn O. J. Chem. Soc., Perkin Trans. 1 1973; 1099
    • 10a Kotha S, Misra S, Halder S. Tetrahedron 2008; 64: 10775
    • 10b Yasukawa T, Satoh T, Miura M, Nomura M. J. Am. Chem. Soc. 2002; 124: 12680
    • 10c Zou Y, Young DD, Cruz-Montanez A, Deiters A. Org. Lett. 2008; 10: 4661
    • 10d Takahashi T, Li S, Huang W, Kong F, Nakajima K, Shen B, Ohe T, Kanno K. J. Org. Chem. 2006; 71: 7967
    • 11a Graebe C, Liebermann C. Justus Liebigs Ann. Chem., Suppl. 1870; 7: 287
    • 11b Liebermann C, Topf A. Chem. Ber. 1876; 9: 1201
    • 11c Liebermann C. Justus Liebigs Ann. Chem. 1882; 212: 1
    • 12a Harvey RG, Goh SH, Cortez C. J. Am. Chem. Soc. 1975; 97: 3468
    • 12b Harvey RG, Fu PP In Polycyclic Hydrocarbons and Cancer: Environment, Chemistry, and Metabolism . Vol. 1, Chap. 6. Gelboin HV, Ts’o PO. P. Academic Press; New York: 1978: 133
    • 13a Criswell TR, Klanderman BH. J. Org. Chem. 1974; 39: 770
    • 13b Cho H, Harvey RG. J. Chem. Soc., Perkin Trans. 1 1976; 836
  • 14 Sanchorawala CJ, Subba Rao BC, Unni MK, Venkataraman K. Indian J. Chem. 1963; 1: 19
  • 15 Bapat DS, Subba Rao BC, Unni MK, Venkataraman K. Tetrahedron Lett. 1960; (26) : 15
  • 16 Clar E. Polycyclic Hydrocarbons . Vols. I and II. Academic; New York: 1964
  • 17 Gilman H, Diehl J. J. Org. Chem. 1961; 26: 4817
    • 18a Platt KL, Oesch F. J. Org. Chem. 1981; 46: 2601
    • 18b Harvey RG, Leyba C, Konieczny M, Fu PP, Sukumaran KB. J. Org. Chem. 1978; 43: 3423
    • 19a Graebe C, Liebermann C. Justus Liebigs Ann. Chem. 1870; 155: 257
    • 19b Liebermann C. Justus Liebigs Ann. Chem. 1871; 158: 299
    • 19c Schmidt E. J. Prakt. Chem. 1874; 9: 241
  • 21 Guerrero TH, Deulofeu V. Chem. Ber. 1937; 70: 947
  • 22 Giebe G. Chem. Ber. 1896; 29: 2533
  • 23 Clar E. Polycyclic Hydrocarbons . Vol. 1. Academic Press; New York: 1964: 171
  • 24 Miller GP, Briggs J. Org. Lett. 2003; 5: 4203
  • 25 Aprahamian I, Preda DV, Bancu M, Belanger AP, Sheradsky T, Scott LT, Rabinovitz M. J. Org. Chem. 2006; 71: 290
  • 26 Sivasakthikumaran R, Rafiq SM, Sankar E, Mohanakrishnan AK. Eur. J. Org. Chem. 2015; 7816
  • 27 Kotha S, Ghosh AK. Synlett 2002; 451
  • 28 Reductive Cyclization of Keto Acid 6: Typical Procedure 57% aq HI (2.49 mL, 20 mmol) and red phosphorus (0.37 g, 12 mmol) were added to a solution of keto acid 6 (0.4 g, 1.0 mmol) in glacial AcOH (30 mL), and the mixture was refluxed for 24 h. The red phosphorus was then removed by filtration. The filtrate was mixed with ice–water (100 mL), and the precipitated solid was collected by filtration, washed successively with 10% aq Na2S2O3 (30 mL) and H2O (60 mL), and air-dried. The crude product was purified by column chromatography (silica gel, hexane) to afford 5-hexylnaphtho[2,3-c]carbazole (7) as a yellow solid; yield: 0.144 g (41%). Further elution of the column (silica gel, 1% EtOAc–hexane) gave 5-hexyl-5H-naphtho[2,3-b]carbazole (8) as a yellow solid; yield: 0.127 g (36%). 7 Mp 104–106 °C (Lit.4c 104 °C). 1H NMR (300 MHz, CDCl3): δ = 9.22 (s, 1 H), 8.74 (d, J = 7.2 Hz, 1 H), 8.51 (s, 1 H), 8.15 (d, J = 8.4 Hz, 1 H), 8.05–7.95 (m, 2 H), 7.62 (d, J = 9.3 Hz, 1 H), 7.57–7.50 (m, 2 H), 7.49–7.44 (m, 3 H), 4.38 (t, J = 6.9 Hz, 2 H, CH2), 1.88 (t, J = 6.9 Hz, 2 H, CH2), 1.30–1.25 (m, 6 H, CH2), 0.87–0.82 (m, 3 H, CH3). 13C NMR (75.4 MHz, CDCl3): δ = 138.8, 137.3, 132.5, 129.6, 128.7, 128.3, 128.0, 127.9 (2 C), 125.7, 124.3, 123.9, 123.5, 121.8, 120.7, 120.4, 120.1, 113.2, 112.4, 109.6, 43.2, 31.6, 29.8, 27.0, 22.6, 14.0. DEPT-135 NMR (75.4 MHz, CDCl3): δ = 128.3, 128.0, 127.9 (2 C), 125.7, 124.3, 123.5, 121.8, 120.7, 120.1, 112.4, 109.6, 43.2, 31.6, 29.8, 27.0, 22.6, 14.0. HRMS (EI): m/z [M+] calcd for C26H25N: 351.1987; found: 351.1980. 8 Mp 124–126 °C (Lit.4c 122–124 °C). 1H NMR (300 MHz, CDCl3): δ = 8.73 (s, 1 H), 8.66 (s, 1 H), 8.54 (s, 1 H), 8.23 (d, J = 7.5 Hz, 1 H), 8.02 (t, J = 8.9 Hz, 2 H), 7.78 (s, 1 H), 7.54 (t, J = 7.7 Hz, 1 H), 7.44 (t, J = 6.4 Hz, 2 H), 7.35 (t, J = 7.4 Hz, 1 H), 7.24–7.22 (m, 1 H), 4.32 (t, J = 7.4 Hz, 2 H, CH2), 1.95 (t, J = 6.8 Hz, 2 H, CH2), 1.51–1.38 (m, 2 H, CH2), 1.36–1.25 (m, 4 H, CH3), 0.88 (t, J = 6.9 Hz, 3 H, CH3). 13C NMR (75.4 MHz, CDCl3): δ = 144.2, 141.0, 131.4 (2 C), 129.6, 128.2, 127.9, 127.6, 127.6, 127.0, 126.7, 124.9, 124.1, 123.8, 122.8, 121.2, 118.8, 118.6, 108.0, 101.2, 43.3, 31.7, 28.3, 27.1, 22.6, 14.0. DEPT-135 NMR (75.4 MHz, CDCl3): δ = 128.2, 127.9, 127.6, 126.7, 124.9, 124.1, 123.8, 121.2, 118.8, 118.6, 108.0, 101.2, 43.3, 31.7, 28.3, 27.1, 22.6, 14.0. HRMS (EI): m/z [M+] calcd for C26H25N: 351.1987; found: 351.1979. Anthra[2,1-b]benzo[d]thiophene (11); Typical Procedure 57% aq HI (2.37 mL, 18.98 mmol) and red phosphorus (0.31 g, 10.1 mmol) were added to a solution of phthalide 13 (0.4 g, 1.26 mmol) in glacial AcOH (30 mL), and the mixture was refluxed for 12 h. After workup similar to that for 7, column chromatography (silica gel, 1% EtOAc–hexane) gave anthra[2,1-b]benzo[d]-thiophene 11 as a pale green solid; yield: 0.307 g (90%); mp 168 °C (Lit.4c 168–170 °C). 1H NMR (300 MHz, CDCl3): δ = 9.40 (s, 1 H), 8.95 (d, J = 8.4 Hz, 1 H), 8.47 (s, 1 H), 8.11 (d, J = 8.1 Hz, 1 H), 7.99–7.90 (m, 3 H), 7.75 (d, J = 9.0 Hz, 1 H), 7.60 (t, J = 7.7 Hz, 1 H), 7.53–7.42 (m, 3 H). 13C NMR (75.4 MHz, CDCl3): δ = 139.7, 138.5, 137.1, 132.3, 130.7, 130.6, 128.9, 128.5, 128.4, 128.2, 128.0, 127.9, 126.1, 125.5, 125.1, 125.0, 124.5, 123.3, 121.7, 120.9. DEPT-135 (75.4 MHz, CDCl3): δ = 128.5, 128.4, 128.0 (2C), 126.1, 125.6, 125.1, 125.0, 124.5, 123.3, 121.7, 121.0. HRMS (EI): m/z [M+] calcd for C20H12S: 284.0660; found: 284.0654.