Synlett 2016; 27(19): 2637-2643
DOI: 10.1055/s-0036-1588334
synpacts
© Georg Thieme Verlag Stuttgart · New York

Harnessing Complex Mixtures for Catalyst Discovery

Edward Richmond
ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France   Email: moran@unistra.fr
,
Joseph Moran*
ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France   Email: moran@unistra.fr
› Author Affiliations
Further Information

Publication History

Received: 22 August 2016

Accepted after revision: 21 September 2016

Publication Date:
11 October 2016 (online)


Abstract

To complement high-throughput experimental approaches to catalyst discovery and optimization, we have employed a simple algorithmic approach to screening and deconvoluting complex mixtures of catalyst components with the goal of rapidly identifying new catalysts and cooperative effects. This Synpacts article highlights how interplay between screening mixtures and mechanistic studies can allow users to rapidly move from initial discovery to rationally developed second-generation catalytic systems.

1 Introduction

2 Application to Lewis and Brønsted Acid Catalysis

3 Application to Transition-Metal Catalysis

4 Conclusion and Perspective

 
  • References

  • 1 For a review, see: Collin KD, Gensch T, Glorius F. Nat. Chem. 2014; 6: 859
    • 2a Hinderling C, Chen P. Int. J. Mass Spec. 2000; 195–196: 377
    • 2b Fagan PJ, Hauptman E, Shapiro R, Casalnuovo A. J. Am. Chem. Soc. 2000; 122: 5043
    • 2c Szewczyk JW, Zuckerman RL, Bergman RG, Ellman JA. Angew. Chem. Int. Ed. 2001; 40: 216
    • 2d Boussie TR, Diamond GM, Goh C, Hall KA, LaPointe AM, Leclerc M, Lund C, Murphy V, Shoemaker JA. W, Tracht U, Turner H, Zhang J, Uno T, Rosen RK, Stevens JC. J. Am. Chem. Soc. 2003; 125: 4306
    • 2e Kanan MW, Rozenman MM, Sakurai K, Snyder TM, Liu DR. Nature (London, U.K.) 2004; 431: 545
    • 2f Beeler AB, Su S, Singleton CA, Porco JA. J. Am. Chem. Soc. 2007; 129: 1413
    • 2g Rozeman MM, Kanan MW, Liu DR. J. Am. Chem. Soc. 2007; 129: 14933
    • 2h Trapp O, Weber SK, Bauch S, Hofstadt W. Angew. Chem. Int. Ed. 2007; 46: 7307
    • 2i Teichert A, Pfaltz A. Angew. Chem. Int. Ed. 2008; 47: 3360
    • 2j Müller CA, Pfaltz A. Angew. Chem. Int. Ed. 2008; 47: 3363
    • 2k Markert C, Rösel P, Pfaltz A. J. Am. Chem. Soc. 2008; 130: 3234
    • 2l Kinoshita H, Ingham OJ, Ong WW, Beeler AB, Porco JA. Jr. J. Am. Chem. Soc. 2010; 132: 6412
    • 2m Montavon TJ, Li J, Cabrera-Pardo JR, Mrksich M, Kozmin SA. Nat. Chem. 2012; 4: 45
    • 2n Quinton J, Kolodych S, Chaumonet M, Bevilacqua V, Nevers M.-C, Volland H, Gabillet S, Thuéry P, Créminon C, Taran F. Angew. Chem. Int. Ed. 2012; 51: 6144

      For undirected screening methods, see:
    • 3a Robbins DW, Hartwig JF. Science 2011; 333: 1423
    • 3b McNally A, Prier CK, MacMillan DW. C. Science 2011; 334: 1114
  • 4 For a mechanism-based screening approach, see: Hopkinson MN, Gómez-Suárez A, Teders M, Sahoo B, Glorius F. Angew. Chem. Int. Ed. 2016; 55: 4361
  • 5 Wieland J, Breit B. Nat. Chem. 2010; 2: 832

    • For reviews describing direct dehydrative substitution of alcohols, see:
    • 6a Bandini M, Tragni M. Org. Biomol. Chem. 2009; 7: 1501
    • 6b Cozzi PG, Benfatti F. Angew. Chem. Int. Ed. 2010; 49: 256
    • 6c Rueping M, Nachtsheim BJ. Beilstein J. Org. Chem. 2010; 6: 6
    • 6d Bandini M. Angew. Chem. Int. Ed. 2011; 50: 994
    • 6e Emer E, Sinisi R, Capdevila MG, Petruzziello D, De Vincentiis F, Cozzi PG. Eur. J. Org. Chem. 2011; 647
    • 6f Sundararaju B, Achard M, Bruneau C. Chem. Soc. Rev. 2012; 41: 4467
    • 6g Kumar R, Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 1121
    • 6h Naredla RR, Klumpp DA. Chem. Rev. 2013; 113: 6905
    • 6i Chen L, Yin X.-P, Wang C.-H, Zhou J. Org. Biomol. Chem. 2014; 12: 6033
    • 6j Dryzhakov M, Richmond E, Moran J. Synthesis 2016; 48: 935
    • 7a McCubbin JA, Hosseini H, Krokhin OV. J. Org. Chem. 2010; 75: 959
    • 7b McCubbin JA, Krokhin OV. Tetrahedron Lett. 2010; 51: 2447
    • 7c Zheng H, Ghanbari S, Nakamura S, Hall DG. Angew. Chem. Int. Ed. 2012; 51: 6187
  • 8 Wolf E, Richmond E, Moran J. Chem. Sci. 2015; 6: 2501
  • 9 Reichardt C. Solvents and Solvent Effects in Organic Chemistry . 3rd ed. Wiley-VCH; Weinheim: 2003
    • 10a Pocker Y. J. Chem. Soc. 1960; 1292
    • 10b Pocker Y, Stevens KD, Champoux JJ. J. Am. Chem. Soc. 1969; 91: 4199
    • 10c Pocker Y, Stevens KD. J. Am. Chem. Soc. 1969; 91: 4205
  • 11 Dryzhakov M, Hellal M, Wolf E, Falk FC, Moran J. J. Am. Chem. Soc. 2015; 137: 9555

    • For other spectroscopic observations of intermolecular hydrogen-bonding in nitro compounds, see:
    • 12a Baitinger WF, von R Schleyer P, Murty TS. S. R, Robinson L. Tetrahedron 1964; 20: 1635
    • 12b Ungnade HE, Roberts EM, Kissinger LW. J. Phys. Chem. 1964; 68: 3225
    • 12c Etter MC, Urbanczyk-Lipkowska Z, Zia-Ebrahimi M, Panuto TW. J. Am. Chem. Soc. 1990; 112: 8415
    • 12d Laurence C, Berthelot M, Luçon M, Morris DG. J. Chem. Soc., Perkin Trans. 2 1994; 491
    • 12e Kelly TR, Kim MH. J. Am. Chem. Soc. 1994; 116: 7072
  • 13 Forlani L In Patai’s Chemistry of Functional Groups . Wiley; New York: 2009
  • 14 Shugrue CR, DeFrancisco JR, Metrano AJ, Brink BD, Nomoto RS, Linton BR. Org. Biomol. Chem. 2016; 14: 2223 ; and references cited therein
    • 15a Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
    • 15b Tran NT, Wilson SO, Franz AK. Org. Lett. 2012; 14: 186
    • 15c Xu W, Arieno M, Löw H, Huang K, Xie X, Cruchter T, Ma Q, Xi J, Huang B, Wiest O, Gong L, Meggers E. J. Am. Chem. Soc. 2016; 138: 8774
    • 16a Hiyama T. Organofluorine Compounds: Chemistry and Applications. Springer; Berlin: 2000: 137-233
    • 16b Gladysz JA, Curran DP, Horváth IT. Handbook of Fluorous Chemistry . Wiley-VCH; Weinheim: 2004: 478-573
    • 16c Uneyama K. Organofluorine Chemistry . Blackwell Publishing; Oxford: 2006: 206-222
    • 16d Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Wiley-VCH; Weinheim: 2013: 247-298
    • 17a Dunitz JD, Taylor R. Chem. Eur. J. 1997; 3: 89
    • 17b Schneider H.-J. Chem. Sci. 2012; 3: 1381
    • 17c Shugrue CR, DeFrancisco JR, Metrano AJ, Brink BD, Nomoto RS, Linton BR. Org. Biomol. Chem. 2016; 14: 2223
  • 18 Champagne PA, Benhassine Y, Desroches J, Paquin J.-F. Angew. Chem. Int. Ed. 2014; 53: 13835-13839
  • 19 Dryzhakov M, Moran J. ACS Catal. 2016; 6: 3670
  • 20 Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369 ; and references cited therein
  • 21 Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
  • 22 Corbet M, De Campo F. Angew. Chem. Int. Ed. 2013; 52: 9896
    • 23a Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
    • 23b Nadres ET, Santos GI. F, Shabashov D, Daugulis O. J. Org. Chem. 2013; 78: 9689
    • 23c Aihara Y, Chatani N. Chem. Sci. 2013; 4: 664
  • 24 Yokota A, Aihara Y, Chatani N. J. Org. Chem. 2014; 79: 11922
  • 25 Richmond E, Moran J. J. Org. Chem. 2015; 80: 6922
  • 26 For a related Ni-catalyzed E-selective alkyne semireduction using H3PO2 as reducing agent, see: Chen T, Xiao J, Zhou Y, Yin S, Han L-B. J. Organomet. Chem. 2014; 749: 51
  • 27 Sorimachi K, Terada M. J. Am. Chem. Soc. 2008; 130: 14452
  • 28 Terada M, Sorimachi K. J. Am. Chem. Soc. 2007; 129: 292
  • 29 Richmond E, Khan IU, Moran J. Chem. Eur. J. 2016; 22: 12274
    • 30a Liu H, Dagousset G, Masson G, Retailleau P, Zhu J. J. Am. Chem. Soc. 2009; 131: 4598
    • 30b Dagousset G, Zhu J, Masson G. J. Am. Chem. Soc. 2011; 133: 14804