Synlett 2017; 28(09): 1018-1027
DOI: 10.1055/s-0036-1588153
account
© Georg Thieme Verlag Stuttgart · New York

Thieme Chemistry Journals Awardees – Where Are They Now? Aromaticity as a Source for Strain Energy? Synthesis of Curved Polycyclic Aromatic Structures via [2+2+2] Cycloaddition Reactions

Sebastian Beeck
Justus-Liebig-Universität Gießen, Institut für Organische Chemie, Heinrich-Buff-Ring 17, D-35392 Gießen, Germany   Email: Hermann.A.Wegner@org.Chemie.uni-giessen.de
,
Hermann A. Wegner*
Justus-Liebig-Universität Gießen, Institut für Organische Chemie, Heinrich-Buff-Ring 17, D-35392 Gießen, Germany   Email: Hermann.A.Wegner@org.Chemie.uni-giessen.de
› Author Affiliations
Further Information

Publication History

Received: 11 January 2017

Accepted after revision: 15 February 2017

Publication Date:
08 March 2017 (online)


Abstract

This account describes synthetic approaches for curved polycyclic aromatics such as circulenes, helicenes and cycloparaphenylenes, relying on a [2+2+2] cycloaddition. A common feature of all these structures is that their synthesis needs to deviate benzene rings from planarity. Relying on [2+2+2] cycloaddition reactions for this task leads to impressive, and in parts, surprising results. The examples shown here and their optimized reaction conditions contribute to a better understanding of processes going on during the reaction. This knowledge is expected to lead to new designs of challenging syntheses using the [2+2+2] cycloaddition methodology.

1 No Gain, No Strain: Synthesis of Curved Aromatics

2 Examples for the Preparation of Strained Systems Relying on a [2+2+2] Cycloaddition

2.1 Circulenes

2.2 Helicenes

2.3 Cycloparaphenylenes

3 Conclusion and Outlook

 
  • References

  • 1 Krygowski TM, Szatylowicz H, Stasyuk OA, Dominikowska J, Palusiak M. Chem. Rev. 2014; 114: 6383-6383
  • 2 Zoppi L, Martin-Samos L, Baldridge KK. Acc. Chem. Res. 2014; 47: 3310-3310
  • 3 Ball M, Zhong Y, Wu Y, Schenck C, Ng F, Steigerwald M, Xiao S, Nuckolls C. Acc. Chem. Res. 2015; 48: 267-267
  • 4 Li X, Kang F, Inagaki M. Small 2016; 12: 3206-3206
  • 5 Barth WE, Lawton RG. J. Am. Chem. Soc. 1966; 88: 380-380
  • 6 Yamamoto K, Harada T, Nakazaki M, Naka T, Kai Y, Harada S, Kasai N. J. Am. Chem. Soc. 1983; 105: 7171-7171
  • 7 Dopper JH, Wynberg H. Tetrahedron Lett. 1972; 13: 763-763
  • 8 Feng C.-N, Kuo M.-Y, Wu Y.-T. Angew. Chem. Int. Ed. 2013; 52: 7791-7791
  • 9 Pascal RA. Chem. Rev. 2006; 106: 4809-4809
  • 10 Rickhaus M, Mayor M, Juricek M. Chem. Soc. Rev. 2016; 45: 1542-1542
  • 11 Shen Y, Chen C.-F. Chem. Rev. 2012; 112: 1463-1463
  • 12 Mori K, Murase T, Fujita M. Angew. Chem. Int. Ed. 2015; 54: 6847-6847
  • 13 Dobrowolski MA, Cyrański MK, Merner BL, Bodwell GJ, Wu JI, von Rague Schleyer P. J. Org. Chem. 2008; 73: 8001-8001
  • 14 Ghasemabadi PG, Yao T, Bodwell GJ. Chem. Soc. Rev. 2015; 44: 6494-6494
  • 15 Segawa Y, Yagi A, Matsui K. Angew. Chem. Int. Ed. 2016; 55: 5136-5136
  • 16 Lewis SE. Chem. Soc. Rev. 2015; 44: 2221-2221
  • 17 Alvarez MP, Burrezo PM, Kertesz M, Iwamoto T, Yamago S, Xia J, Jasti R, Navarrete JT. L, Taravillo M, Baonza VG, Casado J. Angew. Chem. Int. Ed. 2014; 53: 7033-7033
  • 18 Camacho C, Niehaus TA, Itami K, Irle S. Chem. Sci. 2013; 4: 187-187
  • 19 Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR. J. Am. Chem. Soc. 2008; 130: 17646-17646
  • 20 Takaba H, Omachi H, Yamamoto Y, Bouffard J, Itami K. Angew. Chem. Int. Ed. 2009; 48: 6112-6112
  • 21 Friederich R, Nieger M, Vögtle F. Chem. Ber. 1993; 126: 1723-1723
  • 22 Srinivasan M, Sankararaman S, Hopf H, Varghese B. Eur. J. Org. Chem. 2003; 660-660
  • 23 Pérez D, Peña D, Guitián E. Eur. J. Org. Chem. 2013; 5981-5981
    • 24a Lu J, Ho DM, Kraml CM, Bernhard S, Byrne N, Kim LR, Pascal RA. J. Am. Chem. Soc. 2006; 128: 17043-17043
    • 24b Colomer I, Empson CJ, Craven P, Owen Z, Doveston RG, Churcher I, Marsden SP, Nelson A. Chem. Commun. 2016; 52: 7209-7209
  • 25 Baumgärtner K, Meza Chincha AL, Dreuw A, Rominger F, Mastalerz M. Angew. Chem. Int. Ed. 2016; 55: 15594-15594
  • 26 Geng X, Donahue JP, Mague JT, Pascal RA. Jr. Angew. Chem. Int. Ed. 2015; 54: 13957-13957
  • 27 Xiao J, Malliakas CD, Liu Y, Zhou F, Li G, Su H, Kanatzidis MG, Wudl F, Zhang Q. Chem. Asian J. 2012; 7: 672-672
  • 28 Tsefrikas VM, Scott LT. Chem. Rev. 2006; 106: 4868-4868
  • 29 Scott LT, Boorum MM, McMahon BJ, Hagen S, Mack J, Blank J, Wegner H, de Meijere A. Science 2002; 295: 1500-1500
  • 30 Scott LT, Cheng PC, Hashemi MM, Bratcher MS, Meyer DT, Warren HB. J. Am. Chem. Soc. 1997; 119: 10963-10963
  • 31 Reisch HA, Bratcher MS, Scott LT. Org. Lett. 2000; 2: 1427-1427
  • 32 Ohlendorf G, Mahler CW, Jester S.-S, Schnakenburg G, Grimme S, Höger S. Angew. Chem. Int. Ed. 2013; 52: 12086-12086
  • 33 Yamago S, Watanabe Y, Iwamoto T. Angew. Chem. Int. Ed. 2009; 49: 757-757
  • 34 Alonso JM, Díaz-Álvarez AE, Criado A, Pérez D, Peña D, Guitián E. Angew. Chem. Int. Ed. 2011; 51: 173-173
  • 35 Caeiro J, Peña D, Cobas A, Pérez D, Guitián E. Adv. Synth. Catal. 2006; 348: 2466-2466
  • 36 Peña D, Cobas A, Pérez D, Guitián E, Castedo L. Org. Lett. 2003; 5: 1863-1863
  • 37 Dominguez G, Perez-Castells J. Chem. Soc. Rev. 2011; 40: 3430-3430
    • 38a Geny A, Agenet N, Iannazzo L, Malacria M, Aubert C, Gandon V. Angew. Chem. Int. Ed. 2009; 48: 1810-1810
    • 38b Agenet N, Gandon V, Vollhardt KP. C, Malacria M, Aubert C. J. Am. Chem. Soc. 2007; 129: 8860-8860
  • 39 Seo J, Chui HM. P, Heeg MJ, Montgomery J. J. Am. Chem. Soc. 1999; 121: 476-476
  • 40 Yuan W, Wei Y, Shi M. ChemistryOpen 2013; 2: 63-63
  • 41 Kotha S, Sreenivasachary N. Bioorg. Med. Chem. Lett. 2000; 10: 1413-1413
    • 42a Chopade PR, Louie J. Adv. Synth. Catal. 2006; 348: 2307-2307
    • 42b Kirchner K, Calhorda MJ, Schmid R, Veiros LF. J. Am. Chem. Soc. 2003; 125: 11721-11721
    • 43a Bianchini C, Masi D, Meli A, Peruzzini M, Vacca A, Laschi F, Zanello P. Organometallics 1991; 10: 636-636
    • 43b Gandon V, Agenet N, Vollhardt KP. C, Malacria M, Aubert C. J. Am. Chem. Soc. 2006; 128: 8509-8509
    • 43c Hardesty JH, Koerner JB, Albright TA, Lee G.-Y. J. Am. Chem. Soc. 1999; 121: 6055-6055
  • 44 Bhola R, Bally T, Valente A, Cyranski MK, Dobrzycki L, Spain SM, Rempala P, Chin MR, King BT. Angew. Chem. Int. Ed. 2010; 49: 399-399
  • 45 Kumar B, King BT. J. Org. Chem. 2012; 77: 10617-10617
  • 46 Tanaka K, Kimura Y, Murayama K. Bull. Chem. Soc. Jpn. 2015; 88: 375-375
  • 47 Stará IG, Starý I, Kollárovič A, Teplý F, Vyskočil Š, Šaman D. Tetrahedron Lett. 1999; 40: 1993-1993
  • 48 Tanaka K, Kamisawa A, Suda T, Noguchi K, Hirano M. J. Am. Chem. Soc. 2007; 129: 12078-12078
  • 49 Sehnal P, Stará IG, Saman D, Tichy M, Misek J, Cvacka J, Rulisek L, Chocholousova J, Vacek J, Goryl G, Szymonski M, Cisarova I, Starý I. Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 13169-13169
  • 50 Kimura Y, Fukawa N, Miyauchi Y, Noguchi K, Tanaka K. Angew. Chem. Int. Ed. 2014; 53: 8480-8480
    • 51a Kammermeier S, Jones PG, Herges R. Angew. Chem. Int. Ed. 1996; 35: 2669-2669
    • 51b Herges R, Deichmann M, Wakita T, Okamoto Y. Angew. Chem. Int. Ed. 2003; 42: 1170-1170
    • 51c Machón M, Reich S, Maultzsch J, Okudera H, Simon A, Herges R, Thomsen C. Phys. Rev. B 2005; 72: 155402-155402
  • 52 Golder MR, Jasti R. Acc. Chem. Res. 2015; 48: 557-557
  • 53 Tran-Van A.-F, Wegner HA. Beilstein J. Nanotechnol. 2014; 5: 1320-1320
  • 54 Tran-Van A.-F, Götz S, Neuburger M, Wegner HA. Org. Lett. 2014; 16: 2410-2410
  • 55 McDonald FE, Smolentsev V. Org. Lett. 2002; 4: 745-745
  • 56 Tran-Van A.-F, Huxol E, Basler JM, Neuburger M, Adjizian J.-J, Ewels CP, Wegner HA. Org. Lett. 2014; 16: 1594-1594
    • 57a Miyauchi Y, Johmoto K, Yasuda N, Uekusa H, Fujii S, Kiguchi M, Ito H, Itami K, Tanaka K. Chem. Eur. J. 2015; 21: 18900-18900
    • 57b Nishigaki S, Miyauchi Y, Noguchi K, Ito H, Itami K, Shibata Y, Tanaka K. Eur. J. Org. Chem. 2016; 4668-4668