Synlett 2017; 28(07): 841-846
DOI: 10.1055/s-0036-1588135
letter
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Free C–N Bond Activation: Synthesis of α,α-Bis(arylthio) Aldehydes

Xu-Hong Gao
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China   Email: dcl78@wzu.edu.cn
,
Wei Xu
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China   Email: dcl78@wzu.edu.cn
,
Xing-Guo Zhang
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China   Email: dcl78@wzu.edu.cn
,
Chen-Liang Deng*
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China   Email: dcl78@wzu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 01 November 2016

Accepted after revision: 13 December 2016

Publication Date:
07 March 2017 (online)


Abstract

A novel and convenient tandem reaction of I2-catalzyed C–N bond activation of tertiary amines and subsequent aryl thiolation has been explored. A variety of disulfides and series of tertiary amines were efficiently converted into the corresponding α,α-bis(arylthio) aldehydes in moderate to good yields. The reaction proceeded well under transition-metal-free conditions via a C–N activation process.

Supporting Information

 
  • References

    • 1a Martin JR, Moreau J.-L, Jenck F. Drug Dev. Res. 1995; 36: 141
    • 1b Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
    • 1c Humphrey JM, Chamberlin AR. Chem. Rev. 1997; 97: 2243
    • 1d Xu Y.-S, Zeng C.-C, Jiao Z.-G, Hu L.-M, Zhong R. Molecules 2009; 14: 868
    • 1e Hermange P, Lindhardt AT, Tanning RH, Bjerglund K, Lupp D, Skrydstrup T. J. Am. Chem. Soc. 2011; 133: 6061
    • 1f Pattabiraman VR, Bode JW. Nature (London, U.K.) 2011; 480: 471
    • 2a Zhao X, Liu D, Guo H, Liu Y, Zhang W. J. Am. Chem. Soc. 2011; 133: 19354
    • 2b Xie Y, Qian B, Xie P, Huang H. Adv. Synth. Catal. 2013; 355: 1315
    • 2c Ling Z, Yun L, Liu L, Wu B, Fu X. Chem. Commun. 2013; 49: 4214
    • 2d Nguyen TB, Bescont JL, Ermolenko L, Al-Mourabit A. Org. Lett. 2013; 15: 6218
    • 2e Lee M, Rucil T, Hesek D, Oliver AG, Fisher JF, Mobashery S. J. Org. Chem. 2015; 80: 7757
    • 3a Xie Y, Hu J, Wang Y, Xia C, Huang H. J. Am. Chem. Soc. 2012; 134: 20613
    • 3b Chen J, Liu B, Liu D, Liu S, Cheng J. Adv. Synth. Catal. 2012; 354: 2438
    • 3c Luo J.-Y, Wu M.-Y, Xiao F.-R, Deng G.-J. Tetrahedron Lett. 2011; 52: 2706
    • 3d Hu J.-H, Xie Y.-J, Huang H.-M. Angew. Chem. Int. Ed. 2014; 53: 7272
    • 4a Morigaki A, Kawamura M, Arimitsu S, Ishihara T, Konno T. Asian J. Org. Chem. 2013; 2: 239
    • 4b Ramachandiran K, Muralidharan D, Perumal PT. Tetrahedron Lett. 2011; 52: 3579
    • 4c Qin G, Li L, Li J, Huang H. J. Am. Chem. Soc. 2015; 137: 12490
    • 4d Yu H, Zhang G, Huang H. Angew. Chem. Int. Ed. 2015; 54: 10912
    • 4e Zhang G, Gao B, Huang H. Angew. Chem. Int. Ed. 2015; 54: 7657
    • 4f Yu H, Zhang G, Liu Z.-J, Huang H. RSC Adv. 2014; 4: 64235
    • 4g Uehara TN, Yamaguchi J, Itami K. Asian J. Org. Chem. 2013; 2: 938
    • 4h Zou B, Jiang H.-F, Wang Z.-Y. Eur. J. Org. Chem. 2007; 4600
    • 4i Fang T, Gao XH, Tang RY, Zhang XG, Deng CL. Chem. Commun. 2014; 50: 14775
    • 5a Ilangovan A, Satish G. Org. Lett. 2013; 15: 5726
    • 5b Xiong B, Zhu L, Feng X, Lei J, Chen T, Zhou Y, Han L.-B, Au C.-T, Yin S.-F. Eur. J. Org. Chem. 2014; 4244
    • 5c Zhang L, Peng C, Zhao D, Wang Y, Fu H.-J, Shen Q, Li J.-X. Chem. Commun. 2012; 48: 5928
    • 5d Guo S, Lu L, Gong J, Zhu Z, Xu F, Wei Z, Cai H. Org. Biomol. Chem. 2015; 13: 4426
    • 5e Sakai N, Sasaki M, Ogiwara Y. Chem. Commun. 2015; 51: 11638
    • 6a Chen X.-L, Chen T.-Q, Zhou Y.-B, Au C.-T, Han L.-B, Yin S.-F. Org. Biomol. Chem. 2014; 12: 247
    • 6b Zhang X, Yang W, Wang L. Org. Biomol. Chem. 2013; 11: 3649
  • 7 Bao Y.-S, Baiyin M, Agula B, Jia M, Zhaorigetu B. J. Org. Chem. 2014; 79: 6715
    • 8a Li H.-J, He Z.-H, Guo X.-W, Li W.-J, Zhao X.-H, Li Z.-P. Org. Lett. 2009; 11: 4176
    • 8b Kuninobu Y, Nishi M, Takai K. Chem. Commun. 2010; 46: 8860
    • 8c Li Y.-M, Jia F, Li ZP. Chem. Eur. J. 2013; 19: 82
    • 10a Li Y.-L, Li J, Ma A.-L, Huang Y.-N, Deng J. J. Org. Chem. 2015; 80: 3841
    • 10b Sun J, Wang Y, Pan Y. J. Org. Chem. 2015; 80: 8945
    • 10c Sun C.-L, Shi Z.-J. Chem. Rev. 2014; 114: 9219
    • 10d Dai L, Xue Y, Qu L, Choi H.-J, Baek J.-B. Chem. Rev. 2015; 115: 4823
    • 11a Zhao Y, Chen X, Chen T, Zhou Y, Yin S.-F, Han L.-B. J. Org. Chem. 2015; 80: 62
    • 11b Li X, Gu X, Li Y, Li P. ACS Catal. 2014; 4: 1897
    • 11c Fang Y, Zheng Y, Wang Z. Eur. J. Org. Chem. 2012; 1495
    • 11d Mai W.-P, Song G, Yuan J.-W, Yang L.-R, Sun G.-C, Xiao Y.-M, Mao P, Qu L.-B. RSC Adv. 2013; 3: 3869
    • 11e Zhang B, Liu B, Chen J, Wang J, Liu M. Tetrahedron Lett. 2014; 55: 5618
    • 12a Pan L, Bi X, Liu Q. Chem. Soc. Rev. 2013; 42: 1251
    • 12b Ma S. Chem. Rev. 2005; 105: 2829
    • 13a Huang X, Wang JC, Ni ZQ, Wang SC, Pan YJ. Org. Lett. 2015; 17: 5488
    • 13b Liu Y, Yao B, Deng CL, Tang RY, Zhang XG, Li JH. Org. Lett. 2011; 13: 2184
    • 13c Guo SM, Qian B, Xia CG, Huang HM. Org. Lett. 2011; 13: 522
    • 13d Boess E, Schmitz C, Klussmann M. J. Am. Chem. Soc. 2012; 134: 5317
    • 13e Miyake Y, Nakajima K, Nishibayashi Y. J. Am. Chem. Soc. 2012; 134: 3338
    • 13f Kohls P, Jadhav D, Pandey G, Reiser O. Org. Lett. 2012; 14: 672
    • 13g Ratnikov MO, Poyle MP. J. Am. Chem. Soc. 2013; 135: 1549
    • 13h Du HA, Tang RY, Deng CL, Liu Y, Li JH, Zhang XG. Adv. Synth. Catal. 2011; 353: 2739
  • 14 Danen WC, Newkirk DD. J. Am. Chem. Soc. 1976; 98: 516
    • 15a Goto K, Yamamoto G, Tan B, Okazaki R. Tetrahedron Lett. 2001; 42: 4875
    • 15b Tu HY, Hu BL, Deng CL, Zhang XG. Chem. Commun. 2015; 51: 15558
    • 16a Leonard NJ, Leubner GH. J. Am. Chem. Soc. 1949; 71: 3408
    • 16b Dhineshkumar J, Lamani M, Alagiri K, Prabhu KR. Org. Lett. 2013; 15: 1092
    • 16c Yan YZ, Xu Y, Niu B, Xie HF, Liu YQ. J. Org. Chem. 2015; 80: 5581
  • 17 Typical Procedure Under air atmosphere, a reaction tube was charged with disulfane (0.2 mmol), tertiary amine (0.4 mmol), I2 (0.4 mmol), Na2CO3 (0.4 mmol), and DMSO (2 mL). The vessel was sealed and heated at 100 °C (oil bath temperature) for 24 h and then cooled to r.t. The reaction mixture was washed with sat. Na2S2O3 (2 × 15 mL) and then brine (1 × 15 mL). After the aqueous layer was extracted with EtOAc, the combined organic layers were dried over anhydrous Na2SO4 and evaporated under vacuum. The residue was purified by flash column chromatography (hexane–EtOAc) to afford the desired products 3. 2,2-Bis(phenylthio)acetaldehyde (3) Yellow oil (41.6 mg, 80% yield). 1H NMR (500 MHz, CDCl3): δ = 9.28 (d, J = 4.5 Hz, 1 H), 7.48 (dd, J = 6.6, 2.9 Hz, 4 H), 7.34–7.32 (m, 6 H), 4.72 (d, J = 4.5 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 189.4, 133.6, 130.9, 129.3, 128.9, 62.0. IR (ATR): ν = 3015, 2976, 1717, 1539, 1469, 1362, 1230, 1025, 737, 689 cm–1. ESI-HRMS: m/z calcd for C14H12NaOS2 + [M + Na]+: 283.0222; found: 283.0216.